P
¢

S |

oy

‘Ag

pee

,—-a 1

CAM-PC:
A High-Performance
Cellular Automata Machine

USER’S GUIDE

(Revision 0.1)

Andrea Califano
Norman Margolus
Tommaso Toffoli

MIT Laboratory for Computer Science

Copyright © 1987, 1989, 1990 by Andrea Califano, Norman Margolus, and Tommaso Toffoli

Cambridge, MA

Contents

Introduction

1 Getting ready
1.1 Installing the hardware
1.2 Thesoftwarepackage,
1.3 Start-up e e e

The control panel

First steps

2.1 The terminal asa controlpanel
22 Menus e e e e
2.3 Typingconventions
24 Afirstexperiment. L. L Lo e
2.5 Rumningcontrol L oo o oL

The plane editor

3.1 The state of the universe and its representation
32 ThelRGBcoolormap v i v i i ittt en ..
33 Editingpractice L L e
34 Colorfilters
3.5 Shift,hold e
3.6 Rotate,reflect
3.7 Fill,complement
38 Random e e
39 Magnifyscreen
3.10 Dot graphics o oo,
3.11 Planebuffers
312 Thecage o i i i i e e
3.13 Logicoperations e
3.14 Disk Read/Write
1

3.15

Other forms of bit-plane editing

II The programming environment

4 The programming environment

4.1
4.2
4.3
44
4.5
4.6
4.7

Accessing the Forth interpreter
Accessing DOS, and returning to DOS
Programfiles
Theloader
Theeditor

CAM programming
F83

5 A Forth tutorial

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

The command interpreter
Thecompiler
The dictionary
Numbers
Thestack
Expressions
Editing and loading
“Constants” and “variables”
Definingwords
Iteration0
Stackcomments
DUP,DROP,and allthat
Caseselection
Conditional statements
Logic expressions
Extended precision
Searchorder
The Forth glossary
Furtherreadings

6 The screen editor

6.1
6.2
6.3

Editing commands
Datestamp
Shadow screens

Contents

Piians]

3

T

g

Y

I¢—___3

TR

Contents

7 Miscellaneous utilities

7.1 Viewingandseeing,
7.2 Thecurrentfile
73 Editing. e e e e e e e e
74 Loading e e
7.5 Listing e e e e e e e e e e e e
7.6 Movingscreensaround o oL
77 Movingfilesaround oo L

III Writing and running experiments

8 The make-up of an experiment

8.1 A minimal experiment 0.
8.2 Thestandardcolormap
83 Smallchanges e
8.4 Customizing the controlpanel
85 Props e e
86 On-lineanalysis i i i i
8.7 Datalogging. e e
9 Resources

9.1 Thelookuptables.
9.2 Neighborhoods
9.3 Tablegeneration, .

93.1 Details L o
94 Phases L e e

9.4.1 Spatialphases Lo L L.
9.5 Using precompiled tables
96 Thecolormap.,
9.7 Displaying an output function
9.8 Doubling up thelookuptables
99 Theruncycle

99.1 Theruncycleasacoprocess

9.9.2 Micro-steps and macro-steps
9.10 Theevent counter

9.10.1 What is counted—and when
9.11 Pattern, data, and tablefiles
9.12 Inmitialization L .

10 The user connector

73
73
74
75
76
76
7
78

79

81
81
84
84
86
87
90
93

97

97

99
101
102
104
106
107
107
109
109
112
112
113
114
115
116
117

119

4 Contents
11 Advanced interconnection techniques 123
111 Edgegluing i e e 123
11.1.1 Horizontalglue 124

11.1.2 Vertical glue e e e e e e e 124

11.1.3 Gluing cards together 125

11.2 Multiple CAMs e 126
113 Kicking« o o e 128
IV Appendices 131
A Configuring the monitor(s) 133
A.1 Display multiplexing 133
A2 Multiple CAMs e, 134

B Customizing the software 137
B.1 Personalized features, 137
B.2 Recompiling the CAMsystem 138
B.2.1 Generatinganew CAM.EXE 139

B.2.2 GeneratinganewF83.EXE. 139

B.2.3 Generatinganew KERNEL.EXE 140

B.24 Customscreens 140

B.3 Installing the systemonaharddisk 141
B4 Mouse e e 142

C The assembler 143
C.1 Symbolsandsyntax. 143
C.2 Exotic jumps, calls,and returns 145
C.3 Using machine language routines in Forth 146
C.4 Theinnerinterpreter 149
C.5 Structured programming 151
C.6 Simpleexamples 153
C.7 Notes and thoughts on the F83 Assembler 155
C.8 Instruction templates 156
C81 Prefixes, 164

C.9 InterfacewithDEBUG 164
C9.1 Unassemblingcode 165

C92 Tracing it 165

C93 Leaving DEBUG. v v vt it e e e e e 166

D Software interface with CAM 167

D

e

—3

ey

]

~

—s

=y

Contents

E Data formats

E1l
E.2
E.3

Planepatternfiles.
Tablefiles ¢ o i i i e e e e e e e e e
Datafiles e e e e e e e e e e e e e e

F Forth-83 Standard

F.5

Definition of Terms v v v v v v i e e e e e e e

F.12 Required Word Set,

F.12.1 The Required Word Set Layers
F.12.2 The Required Word Set Glossary

F.13 Double Number Extension Word Set

F.13.1 Double Number Extension Word Set Layers
F.13.2 The Double Number Extension Word Set Glossary

F.14 Assembler Extension Word Set,

F.14.1 The Assembler Extension Word Set Layers
F.14.2 Assembler Extension Word Set Usage
F.14.3 The Assembler Extension Word Set Glossary

F.15 The System Extension Word Set

F.15.1 The System Extension Word Set Layers
F.15.2 System Extension Word Set Usage
F.15.3 The System Extension Word Set Glossary

F.16 Controlled Reference Words

G.1
G.2

H.0
H.1
H.2
H.3
H4
H.5

Glossary

CAM words i o e e e e e e e e e e e e e e e e
Notable F83 words @ . i e

Summary of control panel functions

GENERAL e e e e e e e e
DISPLAY-CONTROL ottt e
EDITING,RUNNING o v ittt e e e e e e e e
PLANE-OPS e e e e e e e e e e e e
DOTS,SHIFTS o i e e e e e e i s e e s
ALTERNATE o e e e e e e e e e e e e e

Contents

—

)

Introduction

CAM-PC is a high-performance cellular automata machine intended to serve as
a laboratory for experimentation, a vehicle for communication of results, and a
medium for real-time, interactive demonstrations.

The software described in this manual has been designed to provide access, at
different levels, to all the resources of the machine. At the highest level, you have
an interactive program which turns the keyboard into a dedicated control panel
for caM-PC. This program allows you to run predefined rules and experiments,
and to create and modify the cell-state patterns that the rules act on.

Some control-panel functions give you access to a second level, i.e., the
machine’s programming language, which is an extension of Forth. In this
language you can write new cellular-automaton rules and design experiments
using these rules. The Forth programming environment includes an inter-
preter/compiler/loader, a text editor, and a built-in machine-language assembler.
The software that makes up this programming environment is itself written in
Forth, and you are given the tools to expand it and modify it, if you wish.

This “open box” approach extends to the hardware. Much hardware reconfig-
uring can be performed under software control—and most users will be satisfied
with just plugging the machine into their computer and never touching it again.
However, all the essential inputs and outputs of the machine’s functional blocks
are brought out to a user connector, so that for specialized applications one can
complement or replace some of the machine’s internal resources with external
hardware. In particular, several CAM-PC modules can be interconnected so as to
obtain a larger cellular automata machine.

This manual is intended to be used in conjunction with the CAM-PC Hardware
Manual, published by AUTOMATRIX, INC., and a book of a more methodological
nature, Cellular Automata Machines—A new environment for modeling (Tom-
maso Toffoli and Norman Margolus, MIT Press, 1987), which discusses many of
the machine’s intended applications. We shall avoid unnecessary duplication of
material.

8 INTRODUCTION

A number of annotated experiment files distributed in machine-readable form
as part of the CAM software are to be treated as an integral part of this manual.
A glossary at the end of the manual (Appendix G) contains extensive technical
information on the data structures, functions, and commands that make up the
software. Finally, the amply annotated source files for the CAM Forth system
provide a good source for further understanding and self-instruction.

Included as part of the CAM software package is a version of the F83 system
(originally produced by Laxen, Perry, and many others as a “model” implementa-
tion of the Forth-83 standard). F83 is a public-domain system, and may be freely
distributed and copied as long as the authors are given credit and no copyright
notice is placed upon it.

On the other hand, in order to maintain some degree of control on the future
development of CAM Forth, any applicable proprietary rights and copyrights for
the CAM-specific portion of the software (files whose names begin with the prefix
CAM-) remain with its authors (Norman Margolus and Tommaso Toffoli) and,
inasmuch as that applies, to the MIT Laboratory for Computer Science.

Additional software (in Forth or other languages), utilities, and applications
developed by CAM users can be made available to the CAM community through
the CAM Users’ Group.! This group will also provide a bulletin board listing
the availability of applications notes (some are already available, but are of too
specialized a nature to be included in this manual), revisions and updates; and
mentioning articles, books, and meetings concerning CAM.

YCharles Bennett has offered to help organize this group; he can be contacted at the IBM
Thomas J. Watson Research Center in Yorktown Heights, NY.

Chapter 1

Getting ready

CAM-pPC (briefly, ‘CAM’) is a special-purpose computer designed for the high-
performance simulation of cellular automata. Computation is done by table
lookup, with provisions for on-the-fly display processing and data analysis.

The hardware of CAM consists of a module that fits into a full-length slot
of an IBM-PC, -XT, or -AT computer (briefly, a ‘PC’)—or compatible machine.
The module itself consists of a single six-layer printed-circuit board and contains
approximately sixty integrated circuits. Several modules can be installed in the
same PC and interconnected into a single, larger cellular automata machine, as
discussed in the CAM-PC Hardware Manual and in Chapter 11.

CAM directly produces output for an IBM-PC compatible color monitor (cf.
Appendix A). Because the video signal has 256 lines instead of 240, you may
have to adjust your monitor slightly to see data near the top and bottom edges of
the display. The regular output from the PC can be sent to a separate monitor;
however, a routing cable (provided with the module) allows you to use the same
monitor for displaying, under software control, either the output from CAM or
that from the Pc. Alternative monitor configurations are discussed in Appendix
A.

1.1 Installing the hardware

Programming switches are used to control which part of the PC memory-address
space and which of the PC interrupt lines are used by CAM. In most cases the
default position of these switches, as set at the factory, will allow your module
to run on the PC without further configuration operations. However, memory
or interrupt conflicts may arise if your PC is already populated with a number
of cards; in this case you'll have to change one or two switch settings, as ex-
plained in the CAM-PC Hardware Manual, and one or two software parameters
(see CAM-BASE and CAM-IRQ# in the glossary).

9

10 Chapter 1. Getting ready

Warning: To avoid permanent damage to CAM or the PC, make sure that the
power switch is turned off before performing the following operations.

Remove the PC cover, thus gaining access to the internal expansion slots.
Remove the shiny metal bracket at the rear of any empty full-length slot, saving
the screw. Insert the CAM module into this slot and firmly attach its bracket
with the screw. Put the cover back on. Connect the monitor(s) as explained in
Appendix A.

You are now ready to run the software.

1.2 The software package

CAM’s software consists of a number of program, data, and documentation files.
Different types of files are distingushed by the following extensions:!

DOC Text files containing miscellaneous documentation.
EXP CAM experiment files.

PAT CAM screen pattern files.

TAB Files containing precompiled lookup tables.

DAT Files containing numeric data, typically accumulated in the course of a CAM
experiment.

4TH Source files for the base Forth system and dedicated extensions to Forth,
which together comprise the CAM programming environment (here the term
‘extension’ has its usual meaning).

EXE Executable files, i.e., files executable directly at the DOS level. (Earlier
versions of some of these files have the extension COM.)

The software comes on a number of distribution diskettes, containing the fol-
lowing material:

1. A program called CAM.EXE , which puts you in complete control of the cAM
machine and its associated software utilities.

2. Sample experiments and demos that illustrate all major CAM leatures and
some typical applications.

'In DOS jargon, the extension is an optional second part of a file name, separated from the
first part by a period; thus, files with extension 4TH have a name of the form xxxx.4TE.

1.3. Start-up 1

3. The base Forth programming system (of which CAM.EXE is an extension)
in executable form, under the name F83.EXE . This system, which can be
used as a general-purpose programming environement quite mdependently
of CAM, is accompanied by complete and annotated source code.?

4. The source code for the CAM extension of Forth.

Before attempting to do anything else, you should make two back-up copies
of each distribution disk. Make the copies using the DOS command DISKCOPY ,
as explained in the DOS manual. Put the original set of distribution disks and
one back-up set in a safe place. Use the second copV as a master, should further
duplication be necessary.

Look for a file called READ-ME.DOC in one of these diskettes, and type it out
on the terminal or list it on the printer. It will contain up-to- date information on
the contents of the software package, and useful hints on how to handle it.

Finally, format one more disk, to be used a work disk, and copy to it the
CAM.EXE program (which by itself is sufficient to run CAM) and the following
experiment and pattern files, which will be used for practice in conjunction with
this manual:

BARELIFE.EXP IRGB.EXP VARLIFE.EXP BRAIN.EXP
SAMPLE.PAT DISK.PAT GUNS.PAT

If you have standard equipment, no installation procedure is needed to start
using the CAM software. If you have a hard disk, eventually you will want to
install all the CAM software there, as explained in Section B.3.

Some configuration options are available for driving different kinds of printers,
supporting more than one CAM module, and personalizing other minor features.
The available options are described in Sections 11.2, B.1, and B.2.4.

1.3 Start-up

The only program required to run CAM is CAM.EXE , which is contained on the
work disk together with sample experiments and patterns.

1. Boot the PC using DOS version 2.1 or higher.

2. Insert the work disk in one of your drives.

?The Forth system provided with cAM is a modified version of F83, and has been placed
in the public domain; it includes the Forth interpreter/compiler/loader, the screen editor, the
assembler, and many utilities. Also included is a metacompiler, by means of which one can
completely regenerate the system, and produce extended or customized versions of it.

12 Chapter 1. Getting ready

3. Make that drive the default one (e.g., if the work disk is in drive A:, type
A: followed by carriage return).

4. Type CAM followed by carriage return.®

The terminal should display the CAM logo and then print
Press ‘m’ for a menu

CAM has passed a cursory hardware test, and you are now in command of the
machine. To return to DOS, type F followed by BYE (cf. end of Section 4.1).

If instead the PC beeps and you get the message ‘CAM hardware not responding!’
there is some kind of hardware problem. The most likely problem is a memory or
interrupt conflict; this may require moving a hardware jumper, as explained in the
CAM-PC Hardware Manual, as well a software “jumper,” as explained under CAM-BASE
and CAM-IRQ in the glossary at the end of this manual (Appendix G). Of course, you
should verify that you have at least 256K of memory in your PC, and that a caM card
has actually been installed in the pc! After this message, the CAM.EXE program will
still run, but without attempting to talk to caM; thus, program development is possible
even when the CAM card is not physically present.

3Since the extension COM , typical of an executable program file, is supplied by DOS by
default, you need not explicitly type CAM.EXE.

(m

e-’.\'!

Part 1

The control panel

13

3

1

ey

3

TR

T

Chapter 2

First steps

This chapter introduces you to the use of the PC terminal as a “control panel”
for CAM. As an example we’ll load and run the game of “life”"—a well-known
cellular automaton you may already be familiar with. Most of this material will
be covered in a more systematic way in the following chapters.

For ready reference, Appendix H displays a complete summary of control-panel
commands. -

2.1 The terminal as a control panel

The CAM program takes control of all of the PC hardware and presents you with
an integrated programming environment suitable for running CAM. Most of the
time the terminal (i.e., the PC’s keyboard and monitor) is turned into a dedicated
control panel, where each key has a special function with immediate effects. Some
keys allow you to temporarily leave the control-panel mode to access more generic
programming resources, such as the Forth interpreter or the editor; in this context,
the function of the terminal reverts to that of a (smart) typewriter.

As we’ve seen in the previous chapter, the CAM program comes up with the
message

Press ‘m’ for a menu

if everything seems to be in working order. Just below this message you will
notice a little “happy face;” this is a prompt telling you that the terminal is in
the control-panel mode and is ready to accept a command. The prompt comes in
one of two colors. A black face means that an experiment is actually running; a
white face means that no experiment is in progress, or that the experiment you
were running is temporarily stopped.

15

16 Chapter 2. First steps

2.2 Menus

If you type m now, the screen will display the master menu (the “menu of

menus”), which should look something like this

Om GENERAL

im DISPLAY/CONTROL
2m EDITING,RUNNING
3m PLANE-OPS

4m DOTS,SHIFTS

5m ALTERNATE

If you type, say, 3m you’ll get menu 3, concerned with CAM-plane operations.
Each menu lists a whole set of one-key commands, each accompanied by a short
mnemonic name to help you remember its function. Once you learn which key
invokes some desired function you can type it directly, without going through a
menu. All these functions will be discussed in detail in the next few chapters.

2.3 Typing conventions

Each control-panel command consists of a single keystroke, possibly preceded
by a numeric argument® and possibly followed by a text-string argument. We’ll
indicate the command keystroke by a box containing the corresponding character;
for example, the Menu command will be denoted by . The “carriage return”
or “enter” key, typically the largest on the keyboard, is indicated by the symbol
=) |

In general, the control panel and the Forth interpreter distinguish between
upper- and lower-case letters—and the case of a letter depends, as usual, on
whether you are pressing the SHIFT key and on whether you are in CAPSLOCK
mode.?

The following typing conventions apply to the control panel (which is always
in no-CAPS-LOCK mode) ;

1. A nonalphabetic symbol in a box, such as El or El, means you have to hit
the corresponding key, with a SHIFT when appropriate.

2. A lower-case letter in a box, say EI, means that you must simply hit the A
key.

1See Appendix H.O for how to enter an argument in a base different from ten.

2In many PC models, software is not able to control the CapsLock light (where it exists) in a
consistent manner. This difficulty is solved by letting the size of the cursor on the terminal—tall
(D) or short (.)—tell you whether or not you are in CAPSLOCK mode.

T

Rl .,__a

B

2.4.

A first experiment 17

. An upper-case letter in a box, say , means that you must hit the A key

while holding the SHIFT key pressed.

A small-caps word in a box, such as [Esc], means that you must hit the
corresponding key on your keyboard (refer to the PC operating manual).

. The function-key boxes and refer to the unshifted and shifted ver-

sions respectively of the F1 key.

A word in typewriter font, such as life , denotes a text-string argument,
to be typed character-by-character and followed by .

A letter in a box starting with the prefix Ctrl- (such as|Ctrl-A|) means
that you must hit the corresponding key while holding the CONTROL key
pressed.

A letter or function key in a box starting with the prefix Alt- (such as

) means that you must hit the corresponding key while holding the
ALT key pressed.

Finally, will denote “break” —a brute-force way of aborting exe-
cution of any command—which in the PC is actually achieved by pressing

ScROLLLOCK while holding the CONTROL key pressed.

With the above conventions, a sequence such as life indicates that you
must type|L| (using the SHIFT key, since this is an upper-case letter), and then the
string life followed by . Note that, as soon as you enter the command ,
the happy face disappears and is replaced by an appropriate prompt message—in
this case

Load.new.file:

and the keyboard temporarily switches from control-panel mode to typewriter
mode, so that life will be treated as a text string rather than as the sequence of
commands E]; the keyboard reverts to the control-panel mode as soon as
you enter You can always escape from the typewriter mode by pressing :
this aborts the current command and immediately returns you to the control-panel
mode.

2.4 A first experiment

At this point you are ready to run a simple CAM experiment.

o Type . You'll see the message

18 Chapter 2. First steps
Load.new.file:

e Answer with the name of the experiment file you want to load.? In this case,
type barelife.

Before typing anything else, wait until you again see the happy face prompt.
The red light of your disk drive will flash briefly, some comments will appear on
the terminal, and the happy face will reappear: the program for the experiment
BARELIFE has been successfully loaded.

Now we need to give some initial conditions to the experiment. Type Om‘to
fill cAM’s plane 0 with random bits. The plane’s contents is displayed on CAM’s
monitor; you should see a random pattern of green dots.

If you are sharing the color monitor between CAM and the PC, you must use
the command @ (“alternate display”) in order to see CAM’s output rather than
that coming from the PC (cf. Appendix A). The E] command is a toggle, i.e., it
will move you back and forth between the two display modes. On the other hand,
will force the display to the default, PC-output mode.

|a] | Alternate display. Toggle between PC and
CAM display (if monitor is shared). See Ap-
pendix A for the use of an optional numerical
argument.

Restore PC display (if monitor is shared be-
tween PC and CAM).

(2.1)

The usefulness of a “restore default state” command such as LI_‘ is not obvious in
the normal, interactive situation, since you can easily see from the display what
mode you are in. However, such commands are essential in certain situations
(remote control, “macros” consisting of canned sequences of keys, etc.) where the
state of the display (or of some other CAM feature) may not be known a priori.
In general, the shifted version of a control-panel command has a meaning closely
related to the unshifted version, and is used to restore a default state, to ask for
a text string as an argument, or for some other less-frequently used variant of the
command.)

While the unshifted and shifted versions of keys have a predefined meaning,
the Alt- versions available for user-defined commands, as explained in Section
8.4.

3The |L| command expects the name of a disk file, and assumes for this file the default
extension EXP, so that you don’t need to append the extension unless your experiment file has
one other than EXP. Moreover, file names are passed on to DOS, which is “case-blind;” thus, in
the present context 1ife and LIFE are equivalent.

3

_ 3

3

2.5. Running control 19

2.5 Running control

Now that you have loaded an experiment and set the initial conditions, you can
control the evolution of the system by using one of the commands listed below.

From the EDITING,RUNNING menu
[s] Step. Execute a single step of the evolution of the cel-
lular automaton. If this command is preceded by a nu-
meric argument n (in the range 1 through 232—1), it will
execute n steps at the current step rate (unless stopped
earlier by the Stop command).

Run. Run steps continuously, at the current step rate.
The result is real-time animation on the screen.

SPACE| | Stop. Stop running, and display on the control panel the
value of the step counter. Use El to resume running.

Slowest. Go to the lowest step rate (approximately 1
frame/sec).

Fastest. Go to the highest step rate (approximately 60
frames /sec).

IZJIE[E

Slower. Halve the step rate. If you hit this key sev-
eral times, the movie will turn into a slide show. (As a
mnemonic, note that [,] and [.] are just the unshifted

versions of |<| and)

Faster. Double the step rate.

[

From the DISPLAY-CONTROL menu

Expand. Display a magnified view of the central por-
tion of the CAM screen (use the arrow keys, discussed
in Section 3.5, to move to the center of the screen the
area you are interested in). Hit @ again to return to
the normal view. The magnified view may be used even
while the simulation is running, but it will slow it down.
All control-panel commands can still be used while in
expanded mode. See Section 3.9 for more details.

=]

The step counter is initialized to the value —n by the command n (where n
denotes the numeric argument), and is incremented by 1 after each step. When the
counter reaches 0 the simulation is stopped. If you type 100 and press the
bar before 100 steps have completed, the counter will display a negative value; if you
resume by typing @ with no argument, the counter will continue incrementing up to
0 and then the simulation will stop. If you resume again with E], it will start going

20 Chapter 2. First steps

through positive values. The counter works modulo 232; if you type 0, it will count
1,2, 3, ... and will stop when it reaches 0 again—after 23 steps. Thus, n[s] is useful
for a “count-down” of n steps, and 0 for counting from 0 upwards.

~

~

N

- rg

TR

Pr— _3 '

T3

~ 73

3

Chapter 3

The plane editor

The bits of information that make up the state of the CAM universe are arranged
in four arrays of size 256256 called bit-planes. Normally, each of the bit-planes
is wrapped around so that its left edges adjoins the left edge, and similarly for
top and bottom edges (but cf. Section 11.1 and Chapter 10).

A number of control-panel commands are available for editing the contents of
the CAM planes, in order, for instance, to construct a given initial state for the
cellular automaton. We shall refer to this subset of control-panel commands as the
plane editor. The plane editor is interactive, in the sense that whatever changes
you make to the contents of CAM’s planes is immediately displayed on the CAM
monitor.!

The cAM plane editor is a quite different object from the Forth screen editor
(Chapter 6), which is used for interactively editing Forth programs on the PC
monitor. (In this context, ‘screen’ is a Forth technical term; it refers to a block
of Forth text residing on disk, or to the same block as displayed in the screen
editor’s window.) In brief, the plane editor allows one to manipulate some of
CAM’s contents as graphic material, displayed on the CAM monitor, while the
screen editor allows one to manipulate some of the PC’s contents as text material,
displayed on the PC monitor.

3.1 The state of the universe and its represen-
tation
The bits of information that make up the state of the CAM universe are arranged

in four arrays of size 256 x256 called bit-planes. Thus, each of the 256x256 sites
or “cells” of the cellular automaton contains four bits, one from each bit-plane.

1Provided that an appropriate color map is being used. This will be explained in a moment.

21

22 Chapter 3. The plane editor

Treating the state of a cell as a collection of four bits is convenient for pro-
gramming purposes. For display purposes, it is better to represent each cell by a
colored dot, or pixel, on the screen. The color, of course, will correspond to the
cell’s state according to a definite assignment: the table that decides which color
has been assigned to each of the 16 possible cell states is called the color map.
In caM, the contents of the color map can be specified by the user to suit the
requirements of each experiment.

We'll explain later how to build different color maps and how to use them
for different purposes. For the moment we’ll use a color map that establishes
a one-to-one correspondence between the contents of a cell and the color of the
corresponding pixel, so that the picture on the screen provides an unambiguous
representation of the bit-planes’ contents.? In this way, nothing is hidden from
view: if you change a bit in one of the planes something will change on the screen.

Color map: IRGB-MAP

Plane Monitor line | Pixel Color
0f1]2]3 I[R|G]B]color code
[0oJofo]o black 0
o{ojof1 e | blue 1
0j]o0j1{0 ° green 2
ofo|1}1 e | cyan 3
of1]o0]oO ° red 4
0]1|0]1 ° e | magenta 5
0|1]|1]0) yellow 6 (3.1)
o|l1]1]1 . o | white 7
1/]0[0|O0] e gray 8
1{0]O|1] e e | bright blue 9
1]10|1|O0] e bright green A
1({o|1]|1ffe e | bright cyan B
1|1(0[0]e]e bright red C
111(0f[1]efe e | bright magenta D
1|1|{1]|0]e]| e bright yellow E
1|1|1]|1]e] e o | bright white F

3.2 The IRGB color map

The color map we are going to use for editing practice is called IRGB. These four
letters stand for the four input lines of the color monitor, namely Intensity, Red,

2A color map may assign the same color to two or more different cell values; in this case one
cannot unambiguously reconstruct the contents of a cell from its color on the screen.

s

e

3

¥

B

3

T3

3.3. Editing practice 23

Green, and Blue. The last three signals separately drive the PC monitor’s three
color beams, while the first adds some extra white light by increasing the intensity
of all three beams. This color map (defined by the Forth word IRGB-MAP)
establishes a direct link between the contents of the four bit-planes and these four
signals, as shown in Table (3.1). For instance, the blue beam will be turned on
for a given pixel on the screen if in the corresponding cell the bit of plane 3 is
“on” (i.e., has value 1). If more than one bit is on, the overall pixel color will be
a superposition of the corresponding primary colors, plus intensity if present.

3.3 Editing practice

To start a tutorial editing session, where you will be able to immediately practice
the commands of this chapter as they are introduced, it will be convenient to
initialize CAM to an agreed upon state; in particular, to get a sample pattern into
the planes and to load the color-map table with IRGB-MAP .

To this purpose, type irgb 3 and wait for the happy-face prompt. This
loads a “dummy experiment” that (a) specifies IRGB-MAP as the color map—so
that all the editing you do on the bit-planes will be clearly visible on the caAM
screen—and (b) specifies identity as the rule for the cellular automaton (this is
a “do nothing” rule)—so that even if you inadvertently hit the Step or Run keys
(cf. Section 2.5) the pattern on the screen will not change. Now type @sample
to get a sample pattern contained in the file SAMPLE.PAT and copy it into CAM’s
bit planes; this pattern will appear on the screen (cf. Section 2.4 if you have any
problems here).

As explained in Section 2.3, many control-panel commands may be preceded
by a numeric argument. For most of the commands that make up the plane editor
this argument is used to specify on which plane (or planes) the command itself
should operate. Planes are numbered 0 through 3, and the available options for a
“plane” argument are:

0—3 : Select only the specified bit-plane (0 through 3).
4 : Select plane pair 0-1 (i.e., both planes 0 and 1).
5 : Selects plane pajr'2—3 (i-e., both planes 2 and 3).

No argument : The command is carried out on all four planes.

All keys which take a “plane” argument follow this convention (with only one
exception, namely the @ key, which will be explained when we come to it).

3Don’t forget to hit [~] at the end of the string argument.

24 Chapter 3. The plane editor

For example, the command [z] is defined as follows in Table (3.8) below:

[z] | Zero. Fill plane(s) with Os (“clear” the
planes).

Thus, typing E] will clear all four planes; OE] will clear only plane 0; 4E| will
clear planes 0 and 1; etc.

3.4 Color filters

It is possible from the control panel to temporarily modify the color map currently
in use so that one or more of the inputs to the color monitor are cut off. This
is occasionally useful while debugging an experiment: if the current color map is
one that directly routes the contents of the four planes to the four monitor inputs
(as does the IRGB color map), then cutting off one of the beams is equivalent to
hiding from view the corresponding plane—without actually affecting its contents.

The relevant commands are

{£2] | IRGB map. Use IRGB-MAP as the color
map, and restore any beams that are cut off.
This “faithful” map is useful for debugging
purposes.

Intensity. Whatever color map is in use, tog- (3.2)
gle “intensity” beam on or off.

6| | Red. Similarly, toggle red beam on or off.

ElE =

Green. Toggle green beam on or off.

Hh
-
(=)

Blue. Toggle blue beam on or off.

Note that reactivates any beams that were turned off by . Practice
the above commands right away (if the pattern SAMPLE.PAT has been destroyed
by the previous practice session, get it again from disk using the @ command);
then type to restore full view of the planes.

—- ——— o

T3

yrm— —%

Prppe—

3.5. Shift, hold 25

The following commands are also available

[F2| [Standard map. Use STD-MAP as the color
map, and restore any beams that are cut off.
This is the default or standard color map,
discussed in Section 8.2.

[F4] | Restore intensity. Restore intensity beam, if (3.3)

cut off by .
F6] | Restore red. Restore red beam.
F8| | Restore green. Restore green beam.

[F10| | Restore blue. Restore blue beam.

For sake of reference, we shall list here the following

[A1t-F2| | (Custom map). As all A1t- commands, this
control-panel command is initially undefined.
However, a custom color map defined by the
user for a given experiment should preferably
be attached (cf. Sections 8.4, 9.6) to this key,
for convenience in locating it.

(3.4)

3.5 Shift, hold

The following commands use the numeric keypad section of the keyboard (briefly,
the “arrow keys,” even though only four of these keys are actually marked by
arrows). They are used to shift all or some of the four bit-planes in any of eight
directions.

Shift plane(s) up.

Shift plane(s) down.
Shift plane(s) left.

Shift plane(s) right.

Shift plane(s) up-right.
Shift plane(s) down-right.
Shift plane(s) up-left.
Shift plane(s) down-left.

(3.5)

EEOER
g}

v
(%]
=
2z

oo
o
=
t

&3]
Z
=

For instance, pressing the “right arrow” key will make the screen pattern
shift rightwards, wrapping around from the right edge to the left one. The pattern

26 Chapter 3. The plane editor

will keep shifting as long as you keep the key pressed. If you just hit the key
momentarily, the pattern will shift by an amount determined by the shift-size
register (see below), with initial default of eight pixels.

For these commands, the optional numeric argument specifies the amount of
shift in pixel units (thus, it is not interpreted as a “plane” argument). Thus, if
you type 4 the pattern will shift by four pixels, and every subsequent shift
operation will also move the pattern by a multiple of four pixels—until you again
give a shift command preceded by an argument. In fact, the eight Shift commands
share a single shift-size register, which is initially set to 8 but is modified when
you give an explicit argument to any of these commands. This argument can be
any number in the range 0-511 (other numbers are reduced modulo 512). To go
back to eight-pixel shifts, type 8[—=]*

Sometimes it is desirable to shift only some of the planes and leave the others
fixed in place. Each bit-plane can be held fixed or made free to shift. The following
commands can be used to obtain any possible combination of “free-to-shift” and
“fixed-in-place” bit-planes:

[h] | Hold. Make plane(s) fixed.
|H| | Unhold. Make plane(s) free to shift.

(3.6)

These commands take an optional “plane” argument. As explained in Section 3.3,
this means that @ by itself will hold all planes; OIE will hold only plane 0; 4@
will hold plane pair 0-1; etc.

Examples:
e Type to shift all planes eight cells to the right.

e Type to put the planes back to their original position.

e Type 64 to move the planes right by 64 pixels.

e Now, simply type to put the planes back to their original position.
e Type 8m to restore the shift-size register to its “default” value of 8.

e Type 1@ to hold plane 1 fixed. All subsequent shift operations will affect
only planes 0, 2, and 3 (try some!).

e Type @ to set all planes free (in this case, to release plane 1).
e Type @ 1@ to hold all planes except plane 1.
e Type IE to return to the default state (all planes free).

4Since this will execute an eight-pixel shift, you may follow it with 8 if you want to reset
the shift size to 8 but leave the pattern in its original position.

-

3

3

—

3.6. Rotate, reflect

3.6 Rotate, reflect

27

Six commands are available to perform rotations or reflections on the bit-planes.

They accept an optional “plane” argument.

Rotate plane a quarter-turn clockwise.

Rotate a quarter-turn counter-clockwise.

(=] =]

Reflect about the principal diagonal (which
runs from the upper-left corner to the
bottom-right one).

Reflect about the secondary diagonal.

Reflect about the horizontal midline.

=

Reflect about the vertical midline.

The best way to understand these commands is to see them at work.

(3.7)

Since they involve much data movement between CAM and the PC, the first four of
these commands take a little time to execute; this time is proportional to the number
of planes involved. It is wise to use a numeric argument in order to restrict a command

to just the planes you are interested in.

3.7 Fill, complement

Commands are available for filling a plane with all 0 s or all

1 s, and for

complementing a plane (i.e., turning all 0sto 1 s and vice versa, realizing the

logic-NOT function).

[z] | Zero. Fill plane(s) with 0 s.

|Z] | Unzero. Fill plane(s) with 1s.

|-] | Negate. Complement plane(s).

(3.8)

As usual, a numeric argument is used to select individual planes or plane-pairs.

Examples:
e Type 3E| to complement plane 3.
o Type E’ to clear all planes.

e Type 5@ to fill planes 2 and 3 with 1s.

28 Chapter 3. The plane editor

3.8 Random

Random initial conditions are useful in many experiments. The command m
generates a random pattern where 1 s appear with a certain probability p on
a background of 0 s (the value of p is specified by the commands III or , as
explained below).

With no argument, all planes are filled with the same random pattern. As
usual, a numeric argument restricts the command to the specified plane or plane
pair. Every time you use m a new pattern is generated.

Without a numeric argument, the command EI resets the value p of the prob-
ability register to a default value of 1/2. When preceded by a numeric argument
n in the range 0-65536, this command sets p to the value

_ n
T 65536

p

Since the size of a plane is 256x256 (=63536), n corresponds to the expected
number of 1 s: for example, once you’ve typed 100 E], the command E' will pro-
duce patterns containing approximately one-hundred 1 s (and averaging precisely
one-hundred over many patterns).

It is often convenient to think in terms of a percentage f rather than a number
n of cells. The command |%| preceded by a numeric argument f in the range 0-
100 sets p to f/100, so that, after typing 33, the command El will produce
approximately 33% of 1 s.

|;|| Random. Fill the selected plane(s) with a
random pattern using the current value of p.

[:]| Set random count. The value of the argu-
ment (range 0-65536) specifies the expected
number of 1s. With no argument, p =1/2.

%| | Set random percentage. The value of the ar-

gument (range 0-100) specifies the expected (3.9)
percentage of 1 s. With no argument,)
p=1/2.

li] or ‘Initialize seed. An argument in the range of
0-65536 is used to generate a 272-bit seed
for the random number generator. If no ar-
gument is given, a default value is used for
the seed.

The random bits are generated by a deterministic, “pseudo-random” algorithm. In
certain experiments, to make significant comparisons it is necessary to use the same

o —

3.9. Magnify screen 29

sequence of random patterns as was used for a previous run of the experiment. The
command E] re-initializes the random-number generator with a “seed” specified by a
numeric argument in the range from 0 to 2'6—1: from the same seed you get the same
sequence, while different values of the seed yield different sequences.

The generator is always initialized with the same default seed upon entering the
CAM program. [i] or [I] without an argument re-initialize the generator to this default
seed.

When p=1/2, a planeful of random bits is generated in a very short time; for
other values of p the process is somewhat longer.

Examples:

e Type E] to get a random pattern with 50% of 1 s and 50% of 0 s, identical
for the four bit-planes.

e Type 10[3 to do the same with only 10% of 1s.

e Type 34901 to initialize the random-number generator with the seed
34901. This seed can be used as a label to identify a repeatable sequence of
random patterns.

o Type 100[:] 0[;] to have about one-hundred 1 s in bit-plane 0.
o Type[:] (or [%], or S0[%]) to reset p to its default value of 1/2.

o Type o[;] 1[;] 2[;] 3[;]to obtain four different 50% patterns on the four

planes.

3.9 Magnify screen

The individual pixels on the screen are rather small, and it’s hard to discern
the fine details of a pattern—especially on monitors that have poor resolution or
are poorly aligned. Moreover, dot operations (cf. Section 3.10) are more easily
performed under magnification.

An “expanded screen” mode is provided in CAM. When this mode is on,
the screen is expanded both horizontally and vertically by a factor of four, and
each cell appears as a 3x3-pixel square surrounded by a 1-pixel-wide black frame.
Also, in this mode a positioning grid becomes available, so that one can count cell
positions even when many adjacent cells are empty.

30 Chapter 3. The plane editor

The commands to control the above features are:

Expand. Toggle between normal and ex-
panded mode.

Unexpand. Turn off expanded mode. (3.10)

Grid. Toggle the grid on and off.

GO F

Ungrid. Turn off the grid.

In the expanded mode, only 64 x64 cells are visible on the screen, instead of the
usual 256 x256. To show a close-up of a portion of the screen one must move this
portion close to the center by shifting the whole screen pattern in the appropriate
direction. The expanded mode may be used even while the simulation is running
(all control-panel commands remain available in this mode) but it will slow it
down.

The grid is visible only in the expanded mode. It consists of dots placed at the
intersections of the horizontal and vertical black lines that separate pixels. Note that
the spacing between grid dots, either horizontally or vertically, is two cells (rather than
one), so that each square of the grid encompasses a 2x2 block of cells. This makes
counting rows and columns easier, and is also useful when one uses special rules or
neighborhoods where at any particular step it makes a difference whether a cell lies on
an even or an odd row (or column) of the array (cf. Section 9.4.1).

3.10 Dot graphics

The dot mode is used to set or reset single bits of the bit-planes. Only one plane
(the “target” plane) is accessible at any given time.

3

3

—

73

T

—_———

T3

~ 3

3.10. Dot graphics 31

The commands available for this mode of operation are:

|d] [Dot. Toggle dot mode on or off. If a plane
number is given as an argument (range 0-3),
that plane becomes the target, superseding
the previous target. At start-up, plane 0 is
the target.

Undot. Turn off dot mode.
o Cursor to origin. Move the dot cursor to its
initial position at the center of the screen (co-

ordinates (128,128), whereas the upper-left
corner has coordinates (0,0)).

(0] | Shift to origin. Shift the screen and the cur-
sor as a whole until the cursor comes to the
center of the screen.

INS| | Insert. Complement bit at cursor.

(3.11)

When in dot mode, a cursor is displayed on the screen, centered on the target
cell; the arrow keys (cf. Section 3.5) are now used to move the cursor rather than
shift the planes.

In dot mode, the selected plane is only affected when you press the @ key:
this complements the value of the target bit. If the key is kept pressed and
the cursor is moved using the arrow keys, the cursor will toggle all the bits it finds
on its path; in this way one can draw continuous lines and complex shapes.

When you leave the dot mode, the current cursor position and target plane

are remembered. Though the cursor is invisible, the , E], and @ keys remain

active.

On certain keyboards, pressing [Ins] inhibits the autore peat feature of one or more
of the numeric-keypad keys. In this case, use |CAPSLOCK| or [SCROLLLOCK] as a re-
placement for [Ins].

The dot mode also supports an optional “mouse” (see Section B.4) as a point-
ing device: the cursor on the screen will track the mouse’s movements.

When using the mouse, bits are only toggled while one of the mouse buttons
(or the key) is pressed. The right button is used for drawing horizontal
and vertical lines: while the right button is held down, mouse motion will be
interpreted as either horizontal or vertical, but never diagonal. Similarly, the left
button is used for drawing diagonal lines. The middle button (if your mouse has
three buttons, rather than just two) is a convenient duplicate of the key.

When in dot mode, the screen shows the contents of the planes as usual. The
planes may already contain complex patterns, and some care is needed to tell

32 Chapter 3. The plane editor

whether the bit to be toggled is a 0 that will become a 1 or vice versa. To
help in this, the target cell itself will blink: during each blinking cycle, the pixel
spends one-third of the time in its proper color (which reflects the current state
of the cell’s four bits as specified by the color map) and two-thirds of the time in
the color it would have if it were toggled. In this way, one has a preview of the

change that would make.

The normal cursor is a crosshair. When the expanded mode is on at the same
time as the dot mode, the crosshair disappears and the position of the cursor is
represented only by the target cell’s blinking.

If the cursor is outside the 64 x 64-cell central area when you enter the expanded
mode, the cursor will be moved into this area.

Examples:

e Type E] to clear all planes; the empty planes will look black under the IRGB
color map (cf. Section 3.1). Now type EI, and the cursor will appear, with
the target cell blinking gray at a 2/3 duty-cycle. In fact, toggling the target
bit will put a 1 in plane 0 (the “gray” plane under IRGB).

o Type to toggle the target bit; the bit becomes a 1 , and correspondingly
its duty-cycle becomes 1/3 gray and 2/3 black). Type @ to exit the dot
mode, leaving a single gray pixel on the screen.

e Type to turn the bit off.

e Type El, and use the arrow keys to move the cursor around. Now, while
holding the key pressed, use the keypad keys to draw some lines.® Type
to clear the screen.

o Type 2@ @ to get a single green pixel, corresponding to a single 1
in plane 2.

e Type @ El E to clear the planes and have the blinking green cursor on the
expanded screen. While holding the E key pressed use the arrow keys
to draw some lines. Now typeTE] E to turn off both the dot mode and
the expanded mode. The screen will show the final result of your graphics
editing.

SIf while drawing a line you happen to cross another line the pixel at the intersection will be
toggled off again: intersecting lines are XoRed with one another.

3

3

1

3 3

—g 3 -

-y

=y

3.11. Plane buffers 33

3.11 Plane buffers

The contents of one or more planes can be temporarily saved to memory buffers
in the PC, and retrieved from there. Each plane has an associated buffer. Here we
shall discuss mere data movements between planes and buffers. Logic operations
involving planes and buffers are available too; they are discussed in Section 3.13.

The operations described in this section work with a modified meaning when
the cage feature is turned on (see Section 3.12).

|p] | Put to buffer. Save plane(s) to corresponding
buffer(s).

Put to disk. Save plane(s) to a specified file
(see Section 3.14).

Get from buffer. Retrieve plane(s) from cor-
| responding buffer(s).

(3.12)

Get from disk. Retrieve plane(s) from a spec-
ified file (see Section 3.14).

Exchange. Exchange contents of plane(s)
and corresponding buffer(s).

& E B E

With a numeric argument, the command affects only the specified plane (or plane
pair) and the corresponding buffer(s).

Note that the names of all plane operations imply as a syntactical object the
image on the screen. Thus, to remember the data direction of a Put operation in
the present context, verbalize “put the plane.” When the cage is active (cf. next
section), verbalize “put the cage.”

Examples:

e Type @sa.mple to load pattern file SAMPLE.PAT ; type |p| to save all four
CAM planes to the buffers. If you clear the screen typing [z}, you can restore
the previous image by typing IEl

e Type E} to clear the screen and then O[EJ to restore only the contents of
plane 0.

e Type El to put the same random pattern on all four planes. Now each time
you type El you exchange the contents of the planes and buffers. Try OE]
a few times.

34 Chapter 3. The plane editor

3.12 The cage

It is useful to be able to copy a small portion of a screen pattern and move it
to some other place on the screen; to prepare a “rubber stamp” with a certain
picture and drop copies of this picture in several places on the screen; to apply
commands such as Zero and Random only to a limited portion of the screen; etc.

The cage is a collection of four mini-buffers (one per plane) that can be used
for operations of this kind. The horizontal size and the vertical size of the cage
can be independently specified (in multiples of eight pixels, and up to a maximum
size of 64x64 pixels). When the cage is active, it is visible as an overlay in the
middle of the screen, on top of the planes. While the cage is visible, all operations
that take a plane argument apply to the cage: the cage takes on the role of the
screen, and the part of the screen hidden under it takes on the role of the buffers.
Thus E] gets an image into the cage from the middle of the planes, and E' puts the
image in the cage into the middle of the planes; B puts randomness into the cage,
and rotations and flips will apply to the cage rather than to the whole screen.

In other words, one may visualize three “levels” of storage, namely

cage
planes

buffers

and the operations normally defined in terms of the two bottom levels shift their
meaning “one level up” when the cage is active.

Since the cage always appears in the middle of the screen, to “position the
~ cage” one actually has to move the planes relative to the cage, using the usual Shift
and Hold commands (which retain their usual meaning). The cage is of course
used in exactly the same way in normal or expanded mode—the maximum-sized
cage completely fills the expanded view.

The commands to select the cage are:

Cage. Toggle cage mode on or off. A numeric
argumen! consisting of one digit in the range
1-8 specifies the size of the cage (the argu-
ment is multiplied by 8); with a two-digit ar-
gument, the first digit denotes the horizontal
size, the second digit the vertical size. When-
ever an argument is given, the previous cage
is discarded and replaced by a brand new
one.

Uncage. Turn off cage mode.

(3.13)

3

= ——B

—3

g

T3

3.12. The cage 35

When the cage is active its outline is shown by four blinking corners. If the
cage is empty (all 0 s in each of the four mini-buffers) it looks “transparent”
(you can see the CAM planes underneath), and a solid frame with blinking corners
indicates its extent. (The cage’s extent includes the frame itself; the frame is
drawn by showing the plane’s bits as complemented.) On the other hand, if as
much as a single bit in the cage is set (a symptom of this is that the solid frame
disappears) the cage’s contents (whether 0s or 1s) will entirely hide from view
the underlying portion of the planes.

Examples:

o Type @sa.mple to get the pattern SAMPLE.PAT, and 46 to activate a
cage of horizontal size 32 (=4x8) and vertical size 48 (=6x8). You'll see
a hollow rectangular shape with flashing corners: a new cage is empty, and
the pattern underneath will show through.

o Choose a particular feature in the plane pattern, and use the arrow keys to
bring it underneath the cage.

e Type|Z|to fill the cage; now that feature is hidden behind the cage.

o Use the arrow keys to move the planes until the feature reappears from
behind the cage: the CAM planes were not affected by activating the cage
or writing something to it.

e Type E or |C| to deactivate the cage. The cage disappears from view, but
its contents are not lost; type [c| again to get the cage back on the screen.

e Now type E]: the rubber stamp is lowered on the planes (the normal meaning
of EL namely “put plane to buffer,” is modified to “put cage to plane”) which
receive its imprint. Turn off the cage by typing @: the cage disappears, but
its imprint on the planes remains. In a similar way, by typing El in cage
mode you can “capture” into the cage a fragment of the planes, creating a
new rubber stamp.

e Type E to clear the cage—the pattern underneath will again show through.
Shift the pattern by means of the arrow keys, and capture some interesting
piece of it using E_I Use E, m, EI, etc. to rotate or flip the captured piece.®
Use this piece as a stamp, making several copies of it in different positions
of the bit-planes by “lowering” the stamp with E’ and moving the planes
around with the arrow keys.

SIf the cage is not square, rotations or diagonal reflections acting on all four planes will affect
its format as well as its contents (for example, a quarter-turn will turn a 3x2 cage into a 2x3
one); if you try to do that on a single plane you get an error message.

36 Chapter 3. The plane editor

e Make a smaller cage by typing 2 (this is the same as typing 22 @), fill
the cage with random data (identical for the four mini-buffers) by typing EI
Now stamp copies of this random template here and there on the planes.
Do the same using a numeric argument for @, so that only a certain plane
will be affected by the rubber stamp.

3.13 Logic operations

The plane editor provides commands for performing logic operations between
planes and buffers; these operations are performed in parallel on all the sites
of the array. For example, 0 will replace the contents of plane 0 with the
logic-AND (see below) of this plane and the corresponding buffer. All the logic
operations described take two inputs and return one output: the two inputs are
a plane and the corresponding buffer, and the output is put in the same plane.”
As usual, these commands are carried out on all four planes unless a numeric
argument restricts their application to a single plane or plane-pair: will AND
each of the four buffers onto the corresponding plane.

The commands that perform logic operations are

And. Logic-AND buffer(s) to plane(s).
Or. Logic-OR buffer(s) to plane(s). (3.14)
Xor. Logic-XOR buffer(s) to plane(s).

As a reminder, AND, OR, and XOR are defined as follows:

AND OR XOR

00—0 00— 0 00—0
0l—0, 0l—1, 01—1.
10— 0 101 10 —1
11—1 11—1 11-0

Examples:

e Type O@circle to load the pattern CIRCLE.PAT in plane 0, and OIE
to save this pattern (a disk-shaped mask) in buffer 0. Now type OE_' to put
randomness in plane 0. Finally, type 0 to AND the buffer with the plane’s
contents. The randomness that lies outside the circle will be “masked out.”

7In addition to these dyadic logic operations, we have already encountered the monadic (“one-
input”) operation E’ (logic-NoT), which takes a specified plane as input and puts the result in
the same plane, and the 0-adic operations E] (“set to 0”) and @ (“set to 1”), which take no
input and put the result in a specified plane.

3

T

T

3.14. Disk Read/Write 37

3.14 Disk Read/Write

It is possible to store on a disk file or retrieve from a disk file a verbatim image
of one or more CAM bit-planes. We shall call such files pattern files. The default
extension for a pattern file is PAT . The two basic commands are

[P] | Put to disk. Save plane(s) to a specified file.
Each plane contributes 8192 bytes to the file.

|G] | Get from disk. Retrieve plane(s) from a spec-
ified file.

After the command keystroke, the control panel prompts you to type the name
of a file. If no extension is given, PAT is assumed.

With no numeric argument, all four planes are saved or retrieved. If the com-
mand is preceded by a numeric argument, only the specified planes are affected.

If one tries to read from a file that doesn’t have enough data, the file is
“wrapped around.” For example, if one tries to read all four planes from a file
that only contains two, the remaining two planes are read starting again from the
beginning of the file.

(3.15)

If the file name contains either ‘*’ or ‘?’, no data is transferred. Instead, the
control panel prints a directory listing of all disk files whose names match the given
string under the DOS naming conventions; after this, the control panel prompts
you again for a file name. Typing without a file name produces a listing of all
the files with extension PAT . This is handy if you don’t remember what pattern
files are present, or the exact name of a file.

If you change your mind, you can (as always) exit the prompt loop and abort
the command by hitting the key.

Examples:
o Type [G]sample to load all four screens with the contents of the file
SAMPLE.PAT .

e Type E] to clear all planes. Type 2@sample to load only plane 2 from
the file SAMPLE.PAT, leaving the other three planes clear.

e Type @scrap .tmp to save all four planes to file SCRAP.TMP .

e Type 4@ scrap.tmp to save planes 0 and 1 to file SCRAP.TMP ; the system
warns you that you are about to overwrite an existing file, and gives you
a chance to abort the command (by answering with n to the question
“ Dverwrite existing file? (Y/N) 7).

e Type @ to have a directory listing of all the files with extension PAT .
After that, type the desired file name, or to return to the control panel.

38 Chapter 3. The plane editor

3.15 Other forms of bit-plane editing

Bit-plane configurations suitable for a given experiment can of course be produced
in a variety of ways other than through the CAM plane editor. One way is to
generate the desired pattern in a PC memory buffer, using Forth for this purpose
as an ordinary programming language, and then copy this buffer to a CAM plane
(see BUF>PDAT in the glossary).

Another possibility, especially for free-hand drawing of more complex figures,
is to use a separate graphics editor and convert its output to the format of a CAM
PAT file.

For example, the enclosed program HALOPAT.EXE converts output files gener-
ated by “Doctor Halo II"—a graphics editor that accompanies the MOUSE SYS-
TEMS mouse (Section 3.10)—to PAT files. Type

HALOPAT source-file dest-file

The file names must not include the extensions: the default extension PIC is
provided for the source file, and PAT for the destination. If the second argument
is missing, the destination file will have the same name as the source.

The resolution of “Doctor Halo II” is 320x200 pixels. As CAM bit-planes are
256x 256, only the leftmost portion of the Dr. Halo picture is converted, and the
last 56 lines are left empty. To avoid losing the portion of the picture located
under the Dr. Halo menus, move them to the upper-right position of the screen
(as explained in the Dr. Halo manual).

]

3

Part 11

The programming environment

39

73

T3

1

3

-

Chapter 4

The programming environment

How does the control panel actually control the operation of CAM?

The CcAM module is plugged into the PC bus—a set of address, data, and
control lines which are managed by the microprocessor contained inside the PC.
To make CAM perform a certain activity one has to instruct the microprocessor
to conduct a certain dialog with CAM via this bus.

To make a long story short, the CAM.EXE program which you execute when you
want to run CAM consists of a number of program modules that have been written
by somebody who knows CAM and the PC intimately, and of a main “dispatcher”
program which continuously monitors the keyboard. Whenever, say, the |s| key is
hit, the dispatcher summons the program module in charge of telling CAM how to
perform a step; when you hit @, the dispatcher summons the module in charge
of loading a configuration from disk. Some of the program modules activated in
this way open up a dialogue with you, and allow you to expand in an unlimited
way the repertoire of things that CAM can be told to do.

The most “uncontrolled” way for you to gain control is (a) to summon (via
the control-panel |F| command) the Forth interpreter, through which all of the
system’s resources (PC and CAM) become directly accessible; at that point you are
in charge, with all the advantages but also all the burden that this entails. Except
for occasional impromptu interventions, you’d rather be able to (b) compose the
“score” (cf. Section 5.5) at your leisure and (c) give it to CAM to perform (with the
appropriate tempo) whenever you wish. These needs are addressed respectively
by the screen editor (summoned by the @ command) and the loader (summoned

by .

In the rest of this chapter we’ll briefly describe the procedures for accessing
the Forth interpreter, the loader, and the editor from the control panel. More
detailed information on the use of these programming resources is given in the
following chapters and in some of the appendices.

41

42 Chapter 4. The programming environment

4.1 Accessing the Forth interpreter

From the control panel, the Forth command or {£| keys) allows you to enter
into direct conversation with the Forth interpreter; the control-panel prompt—
namely the “happy face” —disappears and the interpreter itself will prompt you
with an ok (or an appropriate error message) after processing each line you
enter at the keyboard (see Chapter 5). As usual, returns you to the control
panel.!

4.2 Accessing DOS, and returning to DOS

The normal way to leave the CAM program and return to DOS is to go to the
Forth interpreter and type BYE.

It is also possible to execute DOS commands without abandoning the CAM
program. From the control panel, the D key will access the DOS command
interpreter; typing EXIT will return control to the panel. DOS can also be
accessed from Forth, as explained under EXEC , COM , and DOS... in the
glossary.

4.3 Program files

Early implementations of Forth, where a full-blown disk operating system was not
available or desirable, let Forth directly manage the contents of the disk. For this
purpose, the entire disk was organized as a collection of sequentially-numbered
blocks of 1024 bytes each.

The present F83 implementation uses DOS as an operating system, thus in-
directly providing all of the DOS services. In particular, a Forth program can
access an arbitrary number of named files. However, within each of these files the
traditional block structure is retained.?

Blocks used for storing Forth code or other text material are called screens (for
this reason, a block file may also be called a “screen file”). Each 1024-character
screen is logically organized as 16 lines of 64 characters each. Since all lines have
the same length, lines are not terminated by an end-of-line control character as
in conventional text files.®

YThis key is sensed only when the system is waiting for keyboard input; to forcibly interrupt
execution of a Forth word, use cf. Section 2.3).

2Future implementations will likely drop the block structure for text files entirely.

3For this reason, attempting to view or list a Forth screen file using the ordinary DOS facilities
such as TYPE, COPY to printer device, etc. yields unreadable results (the whole file looks like
a single unbroken line). Forth’s own listing facilities are discussed in Section 7.5.

3

3

3

1

1]

_ 3

]

_ 13

3

3

.

-3

T4

~73

3

4.4. The loader 43

The numbering of screens within a file starts from 0. However, screen 0 itself
cannot be interpreted by the loader (though it can be edited, listed, used as virtual
memory, etc.). This screen is typically used for extended comments (e.g., a brief
description of the file’s contents, or directions for its use).

For mnemonic convenience, all program files in the CAM Forth system have
been given extension 4TH —except for CAM experiments, which have extension
EXP.

4.4 The loader

Loading a screen or a sequence of screens has essentially the same effect as typing
their contents from the keyboard at the Forth interpreter level. For anything
that involves typing more than a dozen words of Forth it is more convenient and
reliable to compose the text using the screen editor, save it in a screen file, and
from there feed it to the interpreter by means of the loader.

The loading commands are

1| | Load. Load the current file.
L| | Load new. Load a specified file, and make it (4.1)
the current file.

The comman is used for loading an experiment from disk; it works in a way
analogous to |G| (which is used for loading a screen pattern; cf. Section 3.14).
prompts you to type the name of the desired experiment file, and supplies the
default extension EXP to the file name you type.

The control-panel loader first prints all nonblank lines from screen 0 of the file,
as a comment, and then loads all the screens from 1 on.

When a file is loaded with [L{ (or edited with @), its name is stored in the
current-file register. The lower-case command |1| has the same effect as , but
looks in that register for the file name,* so that you don’t have to type it again if
you subsequently want to access the same file. (Typically, you may want to make
a minor change in the file and try the experiment again).

As with @, you can request a directory listing of all EXP files, or of all files
matching a certain template. If you enter a Load command by mistake there are
two ways of getting out of it. If the control panel is waiting for you to type the
name of a file, just type the usual way to return to the control panel. If
loading has already started, you can type (cf. Section 2.3) to abort the
loading.

4The control panel will complain if you type [1| when no file has yet been made current: you
must first explicitly supply a file name with (L] or [E].

44 Chapter 4. The programming environment
If{L] or [1]is preceded by a numeric argument n, instead of the whole file only

screen number n is loaded (but see -->, THRU, +THRU, and INCLUDE in the
glossary), and the comments on screen 0 are not printed.

4.5 The editor

The commands to enter the screen editor are:

e| | Edit. Edit the current file.
E| | Edit new. Edit a specified file, and make it (4.2)
the current file.

As with the Load commands, a numeric argument specifies a screen number—
in this case the screen to be edited. If you specify a screen number past the end of
the file, you will begin editing at the last screen of the file. If @ is used without
an argument, the editor starts at screen 1. As with , you can get a directory
listing by using wildcard characters in the filename, or by hitting [<] instead of
typing a file name.

If the file name specified with IE doesn’t already exist, the program will offer
to create a file with that name, initially consisting of two blank screens.

An editing session is terminated by typing (any modified screens are
automatically saved to disk either during the session or at the end of it). The
editor remembers at what screen and cursor position you were when you exited
it. If you subsequently re-enter the editor by typing |e| with no argument, you
return to where you left off.

You also enter the editor automatically if an error is encountered during
loading—in this case the cursor will be positioned at the point just after where the
error was detected, and an error message will appear below the editing window.®

The commands available from within the editor are explained in Chapter 6.

4.6 CAM programming

The editor and loader together allow the construction and use of your own CAM
experiments. The editor is discussed in detail in Chapter 6. Chapter 7 discusses
a number of utilities mostly concerned with program maintenance.

5The most likely error is for the loader to encounter an undefined word; in this case the error
message is simply a question mark.

B

"1

4.7. F83 45

The remainder of this manual is devoted to explaining how to write your own
CAM experiments. We begin with a Forth tutorial, in the next chapter.® Part III
is devoted to the programming of CAM itself.

4.7 F83

Incidentally, among the pieces of software distributed with CAM you’ll find the base
F83 system—i.e., “Forth without CAM” —with some revisions and improvements
over Perry and Laxen’s original F83 model.

You enter this bare F83 system by typing F83 at the DOS level (make sure
that the file F83.EXE is on line); BYE returns you to DOS.

6This is a slightly extended version of the tutorial appearing in the CAM Book.

46

Chapter 4. The programming environment

G

-

3

Chapter 5
A Forth tutorial

The main purpose of this tutorial is to give you an overall reading familiarity with
Forth—enough to follow the CAM programming examples given in this book and
in the accompanying software.

Relatively little knowledge of Forth is needed to compose full-fledged cAM
experiments: the same few constructs appear over and over with minor varia-
tions, while many features of the Forth environment that are prominent in other
programming contexts are not required at all.

However, these few constructs must be understood well. In many cases an
intuitive presentation will be sufficient, but we shall not hesitate to give the ap-
propriate amount of technical detail in those few cases where this is necessary to
insure exact comprehension.

To practice this tutorial, you have two choices. You can work with the bare
Forth system, by running the program F83.EXE from the DOS level; or you can
run CAM.EXE as you have been doing so far, and access the Forth interpreter
from the control panel by issuing the command |F| (or).

5.1 The command interpreter

You may visualize the Forth command interpreter as a competent but not-too-
literate technician who sits in the machine room of your computer and has access to
all the levers and dials. From the deck, you speak to him through an “intercom” —
i.e., your terminal—issuing orders and receiving reports and acknowledgements
(see Sections 4.1 and 4.2 for how to summon the command interpreter). For
instance, if you say

BEEP

(type it at the terminal, followed by a carriage return) the terminal will respond
with a “beep;” if you say

47

48 Chapter 5. A Forth tutorial

0 100 DUMP

the contents of the first 100 memory locations (starting from location 0) will be
dumped on the screen. After that, the interpreter will say

ok

to tell you it’s done and ready for a new command. (From now on, we’ll take this
carriage-return and ok business for granted.)

Saying BYE dismisses the interpreter; you are then automatically returned to
the context (namely, the CAM control panel or the operating system) from which
you had gained access to the interpreter itself.

The interpreter’s “ears” are conditioned to break up the input character stream
into tokens, using “blank space” (one or more consecutive spaces) and only blank
space as the token separator.! Even though some Forth tokens consist of a single
character (including comma, period, semicolon, etc., which in other computer
languages are often used as “punctuation marks”) one should be careful not to
omit the blank space between them and adjacent tokens. The tokens are passed
on one-by-one to the interpreter’s “brain” and the spaces are discarded. Thus, the
interpreter hears the above command as a sequence of three tokens— 0, 100,
and DUMP —and would hear the same thing if you typed, say,

0 100 DUMP

In order to be understood by the interpreter, the two of you must share a
dictionary of terms and some miscellaneous conventions, which together make up
the Forth language. The dictionary’s contents reflect the range of things that the
interpreter currently knows about. As you take command, you'll find that the
Forth interpreter has already gone through “standard training”—and possibly
some additional, more specialized training (for example, how to run a CAM ma-
chine). This standard training, which is documented in any good Forth manual, is
more extensive than that of many common computer languages; in this sense, one
speaks of Forth as a programming environment rather than just a programming
language.

5.2 The compiler

The entries that make up the Forth dictionary are called, as you might expect,
words. To program in Forth, you successively add new words to the dictionary—
defining each new word in terms of existing ones. In this way you extend the
interpreter’s knowledge—and at the same time your expressive range—with regard

1At the interactive terminal, carriage return acts, of course, as a token terminator. For
“canned” text submitted to the interpreter from a disk file, cf. footnote 6.

1 1

-

5.3. The dictionary 49

to the set of activities you are interested in. At any stage of this construction you
may say something that uses the new words, and check that its actual meaning
(i.e., what the interpreter does in response to your words) is what you had in
mind.
For example, to make up a new word for “beep three times” you type
: 3BEEP BEEP BEEP BEEP ;

As soon as it sees the colon token (‘:’), the interpreter summons the aid of another
technician, called the COLON compiler. This technician takes the token that
immediately follows, in this case 3BEEP , and starts a new dictionary entry under
that name. After that, it expects a phrase (a sequence of tokens) describing the
action of the new word; this phrase, namely BEEP BEEP BEEP, is not executed at
this time, but is compiled in the dictionary as the meaning of 3BEEP . The end
of the phrase is marked by a semicolon token (‘;’)—don’t drop the space before
it—which tells the COLON compiler to return control to the command interpreter.

The language understood by the COLON compiler is slightly different (and
somewhat richer) than that understood by the command interpreter; some things
only work with either the compiler or the interpreter, but not with both. Except
when noted below, everything we will discuss works well either way.

If you now type
3BEEP
the interpreter will look up this word in the dictionary, execute it, and respond
with the usual ok . If you type, say,
4BEEP
the interpreter will look it up but won’t find it in the dictionary; it will then ask

an assistant whether it might possibly be a number (see next section); and finally
will print

4BEEP 7
to tell you it can’t make sense of the token 4BEEP .

5.3 The dictionary

If you type FORTH WORDS , you’ll get a listing of all the words currently con-
tained in the main section of Forth’s dictionary,? starting with the ones Forth has
learned most recently. Thus, if you had just had the above conversation with the
interpreter, the word 3BEEP would be on top of the list. The older word BEEP
would appear somewhere down the list.

?In addition to this main section, called FORTH, the dictionary may contain some additional
specialized sections, as will be explained in a moment.

50 Chapter 5. A Forth tutorial

The following entries
BEEP HERE + ’ CONSTANT C@ ; : C! 0=

taken at random from the dictionary give you an idea of what typical Forth words
look like. Any token can be entered in the dictionary as a word. In particular,
characters that in other languages are used as punctuation marks, such as ‘:’, can
appear as part of a Forth word, or even make up a word all by themselves; the

word ‘C,’ is very different than the two-word sequence ‘C ,’.

A word already present in the dictionary may be redefined by you. For in-
stance, if the speaker in your terminal is dead, as a temporary fix you may use a
version of BEEP that prints on the screen, on a new line, the message ‘Believe
it or not, this is a beep!’. This is done by redefining BEEP as follows

: BEEP CR ." Believe it or not, this is a beep!" ;

Type the above line exactly as it appears (there must be at least one space after
BEEP , after CR, after ." , and before the ;). The word CR will execute a
“carriage return” (moving the terminal’s “printing head” to the beginning of a
fresh line); the construct ." (text)" will print (text) on the screen (this construct
can only be used within a COLON definition). If you now define

: 4BEEP BEEP BEEP BEEP BEEP ;

this word will be compiled using the new version of BEEP , and when executed
will print

Believe it or not, this is a beep!

Believe it or not, this is a beep!

Believe it or not, this is a beep!

Believe it or not, this is a beep!

The old version of BEEP is not deleted from the dictionary, and the previously
defined word 3BEEP will retain its original meaning—which is tied to the old
version of BEEP). If you say 3BEEP now, the three beeps will still be routed to
the (dead) speaker.

It’s all right, and often useful, to redefine a word in terms of its previous
namesake. For instance, if you discover that beeps in your terminal have such a

long decay time that three consecutive beeps sound more like a long one, you may
redefine BEEP as

: BEEP BEEP 10 TICKS ;

(where 10 TICKS means “Wait for ten ticks of an internal computer clock”), and
a sequence of beeps will now sound “staccato” rather than “legato.”

In some English dictionaries, words belonging to certain specialized areas of
discourse are listed in separate sections (e.g., geographical names, measurement

- m— — ,oe—

5.4. Numbers 51

units, abbreviations). In Forth, these sections are called “vocabularies;” in ad-
dition to the main FORTH vocabulary there may be an ASSEMBLER vocabu-
lary containing machine-language op-codes and other assembler-specific terms, an
EDITOR vocabulary containing editor-specific terms, etc. As explained in Section
5.17, there are commands available for specifying which vocabularies should be
searched at any particular moment, and in what order.

5.4 Numbers

If in an ordinary piece of English text you find a phrase such as ‘the motion was
passed with 371 votes in favor’, you won’t look up ‘371’ in the dictionary—and for
that matter you wouldn’t find it there if you did. The meaning of a number derives
from its make-up; this makes it possible for any fool to produce more numbers
than any one would want to list, but at the same time makes it unnecessary to
list the meaning of individual numbers in a dictionary.

The situation is analogous in Forth: numbers are parsed as they are encoun-
tered and their meaning is reconstructed from their make-up by another tech-
nician, called NUMBER , summoned by the interpreter as the occasion arises.
This “meaning” is nothing but an internal representation in binary form. For
instance, if the interpreter sees the token 100 while operating in DECIMAL
mode, this token will be recognized as a number and will be internally converted
to 0000000001100100 (Forth stores integers in 16-bit cells); however, if you have
told the interpreter to operate in HEX mode,® the same token will be given the
meaning 0000000100000000.

Some numbers that for historical or practical reasons deserve explicit mention,
such as ‘three’, are listed (in a spelled-out form) in the English dictionary. In an
analogous way, some common numbers such as 0 and 1 have been entered (in this
form, i.e., 0 —not ZERO) as words in the Forth dictionary.® This leads to more
efficient execution (their meaning has been established in advance, once and for
all, and there is no need to ask for the help of the NUMBER technician) and more
compact code.

By default, Forth handles numbers as signed integers with a 16-bit range (only
216=65,536 different values are available) so that the ordinary counting sequence
-2,-1,0,1,2,3,.. . at a certain point “wraps around”: ...32765,32766,32767,-32768, -
32767,-32765,...,-2,-1,0 (cf. Section 5.15). We’ll not try to convince you that
what is most natural for a computer (or for a person that lives with computers)
should be the most natural thing for you; indeed, while these features of Forth’s

31.e., base sixteen rather than base ten. In Forth, numbers can be read and printed in any
base you choose.
4Words of type CONSTANT; cf. Section 5.8.

52 Chapter 5. A Forth tutorial

“numbers” are actually an asset in low-level programming tasks, serious numerical
applications require much more powerful number-handling facilities. The Forth
philosophy is that specialized applications should be served by specialized exten-
sions to the language (cf. Section 5.16).

5.5 The stack

Forth manages to achieve remarkable expressive power and efficiency; yet a Forth
system (i.e., the language as implemented on a computer) can be amazingly simple
and compact. These advantages are bought at the cost of ruthless standardization,
in particular in the way nearby words in a phrase communicate to one another
the information that binds them together as a semantic whole.

For the purpose of this communication, all data (characters, Boolean variables,
numbers, addresses, etc.) are packaged in a standard-size “carton,” called a cell,
having a capacity of 16 bits, and all data exchanges take place—in a preordained
choreography, as we shall see in a moment—through a single clearing-house called
the stack. This is just a pile of cells that grows or shrinks according to the traffic.

Imagine a stage with this stack in the middle. The Forth interpreter is the
ballet conductor; as he reads off the words that make up your phrase, the corre-
sponding actors show up in sequence, do their thing, and disappear. If an actor’s
part tells him to leave behind certain data for later actors, he’ll walk to the stack
and pile these data, cell by cell, on top of it; if his part expects data from previous
actors, he will walk to the stack and pick them up.

Some data that an actor needs may end up, say, buried two cells deep into
the stack. The actor won’t go fumbling through the stack looking for them (the
cartons don’t carry a label!); rather, his score will explicitly tell him to lift just
the top two cells, grab the cell that is now on top, and put the first two back
down (incidentally, the score notation specifying this sequence of actions is ROT,
discussed in Section 5.12).

With this scheme, there is no need for each piece of data to have an absolute
address—a permanent mailbox with a distinguished name. Instead, all addressing
is by position relative to the top of the stack. If a new, self-contained piece of
choreography is inserted in the old score, at the moment of executing it one will
find the stack already built up to a certain height; during execution of this piece
one will see the stack grow more, shrink a bit, etc., and by the end of the inserted
piece of choreography return to its original height. The rest of the score will then
resume, finding its own data where they had been left.

ey

3 E

r—";

—y

3

™

5.6. Expressions 53

5.6 Expressions

The stack discipline is well suited to the communication needs of a hierarchically
built program. It allows one to use a particularly simple scoring notation—called
reverse Polish notation—by which arithmetical and logic expressions of arbitrary
depth can be written without making recourse to parentheses or other place mark-
ers.

When you type a number to the command interpreter, this number is packaged
in one cell and put on top of the stack. The one-character word ‘.” (“dot”) picks
up the top cell of the stack and prints its contents as a number on the screen.
Thus, if you type

356 .
(where the “dot” is part of what you type) the screen will respond with
356

(In a more conventional programming language, the equivalent of ‘356 .’ would
be something like ‘print(356)’.) Note that the stack went up one level with
356 , down one level with ‘.’, and is now the same height as before.

The word ‘+’ (“plus”) gobbles up the top two cells of the stack, adds them
together, and places the result—consisting of one cell—on top of the stack; thus,
it leaves the stack one level lower than it found it. For example, the expression

23+

will leave the result 5 on the stack (from where you can move it to the screen with
‘.”). If you want to see how much 1 + 2 + 4 is, you type

12+4+ .

We can picture the evolution of the stack as follows

STACK INPUT OUTPUT

. 1
.1 2
12 +
. 3 4
.34 +
7 7

where each row displays (a) the current state of the stack (with the top element
on the right), (b) the text to be interpreted, and (c) what is printed on the screen.
The dots on the left indicate the part of the stack that we haven’t touched; this
indication will be dropped in the following stack examples.

54 Chapter 5. A Forth tutorial

Note that once 3 has been placed on the stack, it does not matter how it got
there; from a functional viewpoint, the expression 1 2 + is interchangeable with,
say, 3,or 11 + 1 +, or anything that eventually bows out having left just
a 3 on top of whatever else the stack contained before. Note also that the two
different expressions

11+1+1+ and 1111+ + +

produce the same end result even though the second one temporarily builds up
the stack to a higher level:

STACK INPUT STACK INPUT

1 1
1 1 1 1
11 + 11 1
2 1 111 1
21 + 1111 +
3 i 112 +
31 + 13 +
4 4

5.7 Editing and loading

Once you have said something to the Forth interpreter, you cannot take it back; if
something goes wrong, you may not even remember exactly what you said.®* While
immediate interaction with the interpreter is very useful, there are times where
you would like to carefully think out in advance a whole sequence of commands
and definitions, review and edit it, and perhaps discuss it with somebody else
before you give it to the interpreter. You want to be in a position to give written
orders, and you might have a collection of different “orders of the day” to be
handed to the interpreter according to the circumstances.

You can do all of this by first writing your text on a disk file, where it can be
inspected and modified by means of the Forth screen editor. Then you can ask the
interpreter to use this file (or a portion of it) as the input stream, instead of what
comes from the keyboard; this process is called loading. When you load a file,
everything (well, almost everything) works as if you were typing the file’s contents
from the keyboard—except that the interpreter now processes your tokens as they
come, without waiting for a carriage return.®

5But see SEE in Section 7.1.

SA typical Forth source file is organized as a collection of text “screens;” the lines that make
up a screen are stored one after the other in the file without any intervening separation marks.
Thus, within a text screen, end-of-line does not act as a carriage return or as a token separator
(cf. footnote 1 in this chapter); on the other hand, the physical end of the screen does.

B

3

73

T

f—

3

5.8. “Constants” and “variables” 55

The commands for accessing the editor and the loader directly from the control
panel without explicitly going through the Forth interpreter are discussed in Sec-
tions 4.5 and 4.4; from within the Forth interpreter, use EDIT and LOAD (Sections
7.3 and 7.4). ‘

When you compose your text with the editor for subsequent loading, you may
choose to format it in a way that facilitates comprehension, and here and there
add a comment to yourself.

The formatting scheme used in this book is the following

: 3BEEP
BEEP BEEP BEEP ;
: BEEP
BEEP
10 TICKS ;
: 4BEEP

BEEP BEEP BEEP BEEP ;

where dictionary entries are lined up on the right half of the page and the “bodies”
of the definitions are segregated on the left half.

The Forth word (removes from the input stream everything that follows, up
to and including the matching character ‘)’; thus, you may write a line as follows

BEEP BEEP (two beeps) BEEP BEEP (two more)

and the interpreter will never hear what is “in parentheses.””
The word ‘\’ (“backslash”) treats as a comment the remainder of the line on
which it appears

: BEEP \ New version!
BEEP \ plain beep
10 TICKS ; \ insert delay

5.8 “Constants” and ‘“variables”

In Section 5.2 we said that the interpreter “executes” the words you type. Ac-
tually, each word in the Forth dictionary carries a notice saying “I am to be
executed by technician so-and-so, who knows how to handle me,” and the in-
terpreter will just pass the buck to this technician. For words that have been

?Observe that the following spacing is correct too
BEEP BEEP (two beeps)BEEP BEEP (two mere)
even though there is no intervening space between ‘)’ and BEEP , since the effect of the word ‘(’
is precisely to throw away the string ‘two beeps)’. On the other hand, the following spacing
BEEP BEEP (two beeps) BEEP BEEP (two more)
won’t do, since it will make the interpreter think that ‘(two’ is a token to be processed.

56 Chapter 5. A Forth tutorial

entered in the dictionary by the COLON compiler, the competent technician is the
COLON interpreter. In general, each type of word has its own compiler and a
corresponding interpreter. The buck stops with words that have been compiled
by the CODE “compiler;” this technician actually produces code written directly
in machine language (i.e., your microprocessor’s native language), and is more
properly termed an assembler. At this point the hardware takes over.

All of this works much more simply than it sounds. Suppose you are writing
a telescope-driving program that needs to know your town’s latitude, say, 43°. It
is good programming practice to give this number a name—say, LATITUDE —so
that whenever this name appears in your program it will have the same effect as
if you had typed ‘43’. To do this, in Forth you say

43 CONSTANT LATITUDE

The word LATITUDE will be entered in the dictionary as a constant, and when
executed it will place the number 43 on the stack.

What happens is that as soon as it sees the word CONSTANT the command
interpreter summons the aid of the CONSTANT compiler, (cf. Section 5.9) who
gobbles up the next token—namely LATITUDE —and starts a new dictionary
entry under that name. The entry will consist of two parts: the first (code field)
contains a notice saying “I am to be executed by the CONSTANT interpreter;” the
second (data cell) is reserved for the value of the constant. At this point the
CONSTANT compiler takes the top cell of the stack—with the 43 you had just put
there—and moves it to the data cell in the dictionary. At execution time, the
CONSTANT interpreter will look at the data cell and place a copy of it on the
stack. ‘

With the above definition of LATITUDE , the command

LATITUDE 7 + .
will print 50 on the screen.
The term ‘CONSTANT’ is somewhat of a misnomer (though it is retained for
historical reasons), since the contents of the data cell may be altered at will; in

the present implementation of Forth, to change the value of LATITUDE to 45°
you say

45 IS LATITUDE‘
The most relevant aspect of a Forth CONSTANT is that it returns the value of its
data cell, rather than a pointer to it (cf. VARIABLE) below).

In cAM, “neighbor words” such as NORTH, SOUTH, etc. act like Forth CON-
STANTs insofar as they return a value; however, this value will change very many
times during the construction of a rule table.

3

5.8. “Constants” and “variables” 57

Forth provides another mechanism for accessing a piece of data, namely by its
address® rather than by its value. The VARIABLE compiler, used in a construct
such as

VARIABLE TIME

is analogous to the CONSTANT compiler insofar as it constructs a dictionary entry,
namely TIME, with a data cell in it. However,

e This data cell is not initialized to a particular value (and therefore the
defining word VARIABLE , unlike CONSTANT , does not expect a value on the
stack).

e When TIME is executed, the VARIABLE interpreter puts on the stack the
address of the data cell, rather than its contents.

Thus, if we type
TIME

what will be placed on the stack is not the current value of TIME (which may
change several times during execution of the program), but its address (which is
always the same).

To get the value of TIME you use the word ‘@’ (pronounced “fetch”), as in

TIME ¢ (data)

(i.e., ‘@ expects an address on the stack, and replaces it with the data at that

address), and to set it you use the word ‘!’ (“store™), as in
(data) TIME !
(i.e., ‘1" expects a piece of data and an address, and ships the data to that
address). For example, to increment time by one unit you write

TIME @ 1 + TIME !
Supposing that the TIME data cell is at location 1000 and its initial contents is
5, the evolution of the relevant data is the following

TIME’s contents STACK INPUT

) TIME
5 1000 ¢

5 5 1

5 51 +

5 6 TIME
5 6 1000 !

6

8In an ordinary computer, memory locations are sequentially numbered; the address of a
piece of data is the number of its location.

58 Chapter 5. A Forth tutorial

(The word +! allows you to use the more efficient construct 1 TIME +! , where
the cell’s value never appears on the stack. Similarly, TIME OFF will store all
0 s in the cell at the address supplied by TIME , and TIME ON will store all 1s,
corresponding to the logic values FALSE and TRUE —cf. Section 5.15.)

From the viewpoint of CAM’s user, Forth VARIABLEs need seldom be used. In
this book, the term ‘variable’ always has the usual meaning of ‘a generic quantity
to which we may assign an arbitrary value’' rather the the more technical Forth
meaning, for which we reserve the small-caps term VARIABLE.

5.9 Defining words

The words : (‘colon’), CONSTANT ,and VARIABLE belong to the class of defining
words, whose action is to create new dictionary entries.

In Forth, a number of defining words of common utility are built-in; each one
activates a miniature compiler (and, at execution time, a miniature interpreter)
for a specific data structure. If an application is going to make regular use of
other data structures, it is possible (and quite easy) to introduce new, appropriate
defining words. Similar considerations apply to control constructs, discussed in
the following sections.

In other words, while, for the casual user, programming will consist merely of
extending the lexicon of the received Forth system, the more sophisticated user will
find it both expedient and easy to extend Forth’s very syntax. Practically every
major programming effort can benefit from a moderate investment in “language
development.”

The developers of the CAM system have made extensive use of the above fea-
tures of Forth.

5.10 Iteration

Once you’'ve stored a program in the computer’s memory, portions of it can be
executed over and over, perhaps with some variations.

For instance, you can define

: BEEP-STUCK
BEGIN
BEEP
AGAIN ;

When this word is called, once the execution reaches AGAIN it jumps back to
BEGIN , producing an endless series of beeps. Short of turning off the power, there

3

L3

3

-3

3

B

5.10. Iteration 59

is no way you can get out of this loop.®
The above BEGIN / AGAIN pair delimits a phrase somewhat like a pair of
parentheses: the phrase in between gets iterated forever. Note that for readability
we vertically aligned the two elements of the pair, flush on the right (this is
recommended in reverse-Polish-notation style), and indented the phrase inside.
A more flexible pair is DO / LOOP ; the word

: 100BEEPS
100 0 DO
BEEP
LOOP ;

will beep 100 times.’® What happens in detail is that DO gobbles up the top two
numbers on the stack, 100 (the loop LIMIT) and 0 (the loop INDEX), and saves
them for later use. The execution proceeds until LOOP is encountered. At this
point, INDEX is incremented by one and compared with LIMIT: if INDEX=LIMIT
the loop is terminated; otherwise, execution jumps back to DO .1

Inside a DO loop, the word I returns on the stack the current value of the
index. Thus, the word

: PRINT-ASCII
127 32 DO I EMIT LOOP ;

will produce all printable ASCII characters. (Character 0-31 are control char-
acters; all others are printable except for the last character of the ASCII set,
namely character 127, which on old-fashioned paper tape “prints” 7 holes on the
last punched character, effectively DELETEing it.) -

Pairs of “parentheses” such as BEGIN / AGAIN and DO / LOOP can be nested
as ordinary parentheses, and a lot more bells and whistles are available. You can
look up the details of these and other flow-control constructs in a Forth manual.
Here we shall only mention that flow-control constructs can only appear inside a
COLON definition: you cannot say

100 0 DO BEEP LOOP

at the command-interpreter level.

9Unless your computer has a working BREAK key—the equivalent of a “panic button.”
190f course if you had typed 999BEEPS you still would have gotten a word that beeps 100
times. A name is a name is a name. ..
The loop index is a modulo-2!® counter. The minimum number of iterations, namely 1, is
achieved when the loop is entered with INDEX just one less than limit; the maximum, when the
loop is entered with INDEX equal to LIMIT: 0 0 LOOP will cycle 2!¢ times!

60 Chapter 5. A Forth tutorial

5.11 Stack comments

By now, we have encountered many words that expect arguments on the stack or
leave results on the stack. Since breaches of stack discipline may send a compu-
tation berserk (if you leave an extra item on the stack everyone after you will get
his data wrong), it will be convenient to have a notation to remind us of just how
many items a word takes from the stack or leaves on it.

The following are examples of stack comments:

DO (n1 n2 --)

DO (limit index --)
BEEP (--)

LATITUDE (-- n)

TIME (-- addr)

+ (n1 n2 -- n3)

+ (mn -- m+n)

2 (== n)

2 (--2)

The general convention is as follows. We put in parentheses a “dash” (customarily
a double-dash) to indicate the word in question. Before the dash we write a list
of what the word expects on the stack; after the dash we write a list of what the
word leaves on it. If nothing appears after the dash, the dash itself is usually
omitted.

What really counts is the number of items in each list—which corresponds to
the number of cells taken from or given to the stack; but the items themselves
may be elaborated upon a little, for extra clarity.

For example, DO takes two items and leaves none. A minimal notation is

DO (nt n2 --)
which just tells us that DO expects two items. A better mnemonic is provided by
DO (limit index =--)

which reminds us that the first item is used as the limit and the second as (the
initial value of) the index of the loop.

As a final grand example, let us load the following three definitions from a
disk file

100 CONSTANT HUNDRED (-- n)
10000 CONSTANT A-LOT-OF (-- n)
: BEEPS (n--)
0 DO
BEEP LOOP ;

and then type the following three commands

g

T

3

T3

5.12. DUP, DROP, and all that 61

3 BEEPS
HUNDRED BEEPS
A-LOT-OF BEEPS

We have seen above that DO wants two arguments. When we type 3 BEEPS ,
the first argument is left on the stack by the 3 we typed, while the second is
placed on the stack by the 0 appearing within the definition of BEEPS : DO ’s
hunger is satisfied.

Note that if we define words giving a little thought to the “stack interface”
(who should supply or consume what and when) and to choosing appropriate
names, the flow of a Forth phrase can be given a natural-language flavor that is
hard to achieve in other programming languages. Properly trained Forth words
can talk to one another under the surface of the phrase, without bothering us with
their chatter.

A generally obeyed convention in Forth is to make words “use up” their argu-
ments rather than leave them on the stack. If an object on the stack is needed as
an argument by a given word and also by another word that closely follows, a sec-
ond copy of this object is made—using the word DUP introduced below—before
the first copy is used up.

5.12 DUP, DROP, and all that

The Forth word ‘*’ (“times”) takes two numbers and returns their product; to
compute the square of 3 you have to type 3 twice: 3 3 * . How about a word
SQR that will take a single argument and multiply it by itself?

Forth provides a number of general-purpose words for manipulating the stack;
one of these is DUP (pronounced “dupe”), which looks at the cell on top of the
stack and puts a duplicate copy of it on top of it; e.g.,

STACK INPUT
5) DUP
595

Thus, SQR can be simply

: SQR (n -- n*n)
DUP * ;
since here ‘*’ will see two copies of the argument.
Related to DUP are DROP (which drops the top item from the stack), SWAP
(which swaps the top two items), OVER (which makes a copy of the next-to-the-

top stack item), ROT (which pulls the third item from underneath and puts in
on top of the first two), and a few more. Words of this kind act somewhat like

62 Chapter 5. A Forth tutorial

pronouns in English (‘this’, ‘that’, ‘one another’, etc.), in that they allow one to
refer by position rather than by name to objects introduced in a different part of
the sentence. As an exercise, verify that the function y(m,n) = (m + n)(m — n)
is computed by the following Forth expression

(mn) OVER OVER + ROT ROT - * (y)

(where the comments tell you what’s on the stack before and after).

5.13 Case selection

A flow-control construct that is extemsively used in programming CAM is the
CASE statement, which allows one to select for execution one of several alternative
actions. Suppose we have three words called BEEP , HONK , and WHISTLE ; we
can then make up a new word, called SOUND , which will take an integer argument
from the stack, with value 0, 1, or 2, and respectively beep, honk, or whistle:

: SOUND (n --)
{ BEEP HONK WHISTLE } ;

That is, 0 SOUND will execute BEEP, 1 SOUND will execute HONK , and so on.
The selection list may consist of any number n of entries, which are to be thought
of as consecutively numbered from 0 upwards, and is delimited by the two “brace”
words, namely ‘{’ and ‘}’. If you attempt to execute the case statement with an
argument that is less than 0 or greater than n — 1 you get an error message.

Suppose you want to make up a word that returns the number of days in a
month. You'd probably try the following

: DAYS (month -- days)
1 -
{ 31 28 31 30 31 30
31 31 30 31 30 31 } ;

Assuming that months are numbered 1, 2, ..., 11, 12, you subtract 1 in order to
have the numbering 0, 1, ..., 10, 11—better suited to the case statement—and
then you look up the number of days. The reasoning is correct, but there is one
minor catch: in CAM Forth the case statement only accepts individual dictionary
words as items in the selection list; with a few exceptions (mentioned in Section
5.4) numbers are not in the dictionary. There is an easy fix to this problem: before
defining DAYS, enter the desired numbers in the dictionary as constants

28 CONSTANT 28 (-- 28)
30 CONSTANT 30 (-- 30)
31 CONSTANT 31 (-- 31)

=3

3

5.14. Conditional statements 63

From this moment the token 28 (for one) will be recognized as a word—one
that leaves a 28 on the stack just as the number 28 used to do before. The case
statement will now accept it as a list item.

5.14 Conditional statements

The phrase between a BEGIN and AGAIN pair is iterated forever, that between
DO and LOOP is iterated a number of times as specified by the two arguments that
DO finds on the stack. A phrase between the words IF and THEN is executed
only if the argument found on the stack by IF has the logic value ‘true’.’?

The word
= (mn -- flag)

compares the two arguments m and n and returns a logic flag having the value
‘true’ if they are equal and ‘false’ if different. Thus, the following word will beep
only when the top two stack items are equal

: BEEP-IF-EQUAL (m n --)
= IF
BEEP THEN ;

A richer construct is the IF / ELSE / THEN, used as follows

: BEEP-OR-WHISTLE (m n --)
= IF
BEEP ELSE
WHISTLE THEN
HONK HONK HONK ;

This word will beep if mm and n are equal, and whistle if they are different; after
that, it will honk three times.

There exists also two conditional-iteration statements. The first has the form
‘ BEGIN (body) UNTIL ’; the (body) (which returns a logic flag) is iterated
until the value of this flag becomes ‘true’. The other has the form ¢ BEGIN
(setup) WHILE (body) REPEAT ’; in which, after the first (setup) (which is always
executed), the sequence (body) (setup) is iterated as long as the value of the logic
flag returned by (setup) remains ‘true’.

12How logic values are encoded in a Forth cell doesn’t matter at this point, and is discussed
in the next section.

64 Chapter 5. A Forth tutorial

5.15 Logic expressions

In defining a CAM rule, sometimes it is convenient to treat the contents of a CAM
cell as a logic quantity (‘on’ or ‘off’, ‘true’ or ‘false’) and sometimes as a number
(0 or 1—or even 0, 1, 2, or 3 when one is dealing with two bit-planes at once).
To understand precisely what is passed on the stack by one word to another in
these cases, it is important to be aware of the coding conventions employed in
CAM Forth concerning arithmetic and logic expressions.

This lengthy section is meant as a reference for cases where doubts might arise;
you may quickly go over it (or skip it altogether) on first reading.

We have seen that the contents of a Forth cell consists of a 16-bit pattern.
The same pattern can have different meanings, depending on agreed-upon con-
ventions. For instance, it can be used to encode an integer from 0 to 65,535
(“unsigned number”), an integer from -32,768 to +32767 (“signed number”), two
ASCII characters (8 bits each) or, quite commonly, a single ASCII character (us-
ing only the lower 8 bits), etc. The cell does not carry a label telling what kind
of encoding was used: it is up to the programmer to arrange things so that any
“user” of the pattern will know what conventions to use in interpreting it.

For example, suppose that the top cell of the stack contains the pattern
1000000000101010; the three words ‘.’, U. , and EMIT will all print on the
terminal the contents of this cell. However, ‘.’ will treat it as a signed number,
and print ‘~-32726’; U. will treat it as un unsigned number, and print ‘32810’;
and EMIT will treat it as a character, and print ‘*’ (since the lower eight bits of
the pattern, namely 00101010, make up the ASCII code for ‘*’).

In many cases it is convenient to treat the cell pattern just as a collection of
separate bits—each one representing an individual binary choice. The words

NOT (p--1)
AND (pgq--1
OR (pgq--1)
X0R (pgq--r1x)

are useful in this context, since they allow one to individually or jointly manipulate
these bits. For instance, one can “turn off” the upper eight bits of a pattern by
ANDing it with an appropriate mask pattern, namely 0000000011111111, in which
the upper eight bits are “off” and the lower eight are “on.”

As a reminder, the logic operations NOT, AND, OR, and XOR are defined as

-~

o

5.15. Logic expressions 65
follows:
NOT AND OR XOR
0—1 00— 0 00—0 00— 0
1—0, 01— 0, 0l—1, 01—1.
10— 0 10—1 10— 1
11—1 11—1 11— 0

In particular, the logic operation NOT complements its one-bit argument, and thus
the Forth word NOT complements each of the 16 bits of a cell. The other three
logic operators act on corresponding bits of two input cells to produce a 16-bit
result.

To drive a conditional statement along one or the other of two possible paths
(see previous section) all one needs is a binary “flag”—with values ‘true’ and
‘false’.!® For this purpose, a one-bit cell would be sufficient; but Forth cells come
in a standard size of 16 bits, and one must have an agreement on which 16-bit
pattern(s) should mean ‘true’ and which ‘false’.

The Forth-83 standard stipulates that words that return a logic flag (such
as = and similar “compare” words) should never put on the stack anything
but the patterns 1111111111111111 for ‘true’ or 0000000000000000 for ‘false’; for
convenience, these patterns have been entered in the dictionary, as CONSTANT
words, under the names TRUE and FALSE .»* On the other hand, words that
expect a logic flag (such as IF and similar “conditional” words) will treat as
‘false’ the pattern 0000000000000000 and as ‘true’ any other pattern.

As long as one uses only the TRUE and FALSE patterns for ‘true’ and ‘false’,
the bitwise logic operations NOT, AND, etc. can also be used to manipulate such
logic flags. However, if one tries to take advantage in an indiscriminate fashion
of the wider “catching range” of IF ° some subtle problems may arise. We shall
give just one example, as a warning to the reckless programmer.

Consider the word

: BEEP-IF-NOT-EQUAL (m n --)
= NOT IF
BEEP THEN ;

(cf. previous section), which beeps only when m and n are not equal. This word
would work the same if one replaced ‘= NOT’ by just ‘-’; In fact, if m and n are
equal their difference m — n will be 0, and will be seen as ‘false’ by IF ; on the

13When more than two choices present themselves, it is usually more natural to use a case
statement (cf. Section 5.13) rather than many nested IF statements.

14Note that, when printed as signed numbers, TRUE will yield -1 and FALSE will yield 0 ;
as an unsigned number, TRUE will yield 656535 (FFFF in hexadecimal).

15 As when using arithmetic as a shortcut to logic.

66 Chapter 5. A Forth tutorial

other hand, if they are different m — n will be a pattern containing at least one
non-zero bit, and will be seen as ‘true’ by IF.

Well, if ‘-’ works “the same” as ‘= NOT’, won’t ‘~ NOT’ work the same as ‘=’
in BEEP-IF-EQUAL of the previous section? If m = n, their difference m — n
is 0 and its complement as given by NOT is the pattern of all 1 s (the TRUE
pattern)—which of course is recognized as ‘true’ by IF , as weintended. If m # n,
the difference pattern will contain some 1’s but may also contain some 0’s; thus
the complementary pattern returned by NOT may contain some 1 s—in which
case it will again be recognized by IF as ‘true’, which is not what we intended.

Since neighbor words such as CENTER , NORTH , etc. return 1 or 0
as a value, we shall use these values as respectively ‘true’ and ‘false’ whenever
expedient. Logic operations involving such 1-bit flags work well, except for NOT
(since it complements all 16 bits). The two word sequence ‘ 1 XOR ’ can be used
to get the 1-bit complement. Alternatively, comparisons such as‘="¢>"¢<’and
¢ <>’ (not equal) can be used to convert 1-bit flags into standard logic flags.!®

- Finally, it will be useful to remember that words such as >PLNO and >AUXO,
which take a stack item and write it as an entry of a CAM look-up table (Section
9.3), only use the least significant bit of the item: any garbage that may have
accumulated in the remaining bits as a result of arithmetic/logic manipulation
tricks will be ignored. (“Joint” versions of these words, such as >PLNA and
>AUXA , use the lowest two bits.)

5.16 Extended precision

It is occasionally necessary to handle numerical quantities having a greater range
or resolution than that provided by 16-bit integers. Forth’s traditional approach
has been to provide minimal support for double numbers (i.e., double-precision
integers) and let the user define whatever data structures and operations are
needed beyond this.

On the stack, double numbers occupy two consecutive Forth cells, with the
most significant cell on top. The words 2DUP, 2DROP, 2@, 2!, etc., which are
useful also in other contexts, can be used for manipulating double-numbers. The
words D+, D-, D=, etc. are specifically intended for double-number arithmetic.

No floating-point package is provided with the current version of caAM Forth.!”
For the moment, it is recommended that other programs be used for numerical

16The words ¢ 0= “ 0> ’ etc. also exist as abbreviations for 0 = etc.
17A floating-point interface that takes advantage of the 8087 or 80287 coprocessor may be
included in a later release.

3

3

3

3

5.17. Search order 67

tasks, using data files for exchanging experiment data between CAM Forth and
these programs. (Data file formats are discussed in Section E.)

Occasionaly, quadruple precision integers (“quad” numbers) may come in
handy for some data-analysis tasks; the file QUAD.4TH provides optional quad-
number utilities.

5.17 Search order

We have seen that, in addition to the main section, called FORTH, the Forth dic-
tionary may contain a number of more specialized sections (ASSEMBLER , EDITOR ,
etc.). Search order commands allow one to do the necessary vocabulary switch-
ing. At any moment, the CURRENT vocabulary is the one in which new definitions
are inserted, while the CONTEXT vocabulary is the one where old definitions are
looked up. (Of course, most of the time both CURRENT and CONTEXT pointers
point to the FORTH vocabulary.) Just mentioning a vocabulary, such as EDITOR,
makes it the CONTEXT vocabulary, superseding the former CONTEXT; the word
DEFINITIONS makes CURRENT be whatever the CONTEXT is at that moment.
Thus, after saying

EDITOR DEFINITIONS FORTH

FORTH is CONTEXT but EDITOR is CURRENT: the interpreter will keep looking
words up in the FORTH vocabulary, but any new definitions will be added to the
EDITOR vocabulary.

The vocabulary organization provides a way to use the same name with dif-
ferent meanings in different contexts, or to make a word unavailable in a certain
context. In CAM Forth, for instance, certain “neighbor words” (such as S.EAST,
&CENTER , etc.) are segregated in special vocabularies in order to make them
available only when the corresponding “neighbor wires” are actually connected to
the lookup table.

F83 enriches the concept of “context vocabulary” by providing a number of
optional “second (third, fourth, etc.) choices” when a given token is not found in
the primary context vocabulary. Although CAM experiments will not need to use
this mechanism, it is an integral part of the way that neighborhood and menus
are defined in the CAM software, and so we briefly discuss it here.

The additional vocabulary choices are arranged stack fashion—the search-
order stack. In addition, there is a minimal ROOT vocabulary which normally
is always available as a last-resort choice, and which contains the search-order
words described below. The command ONLY empties the search stack and makes

68 ” Chaptef 5. A Forth tutorial

ROOT the CONTEXT vocabulary. After saying ONLY , the search order will be

CONTEXT: ROOT
ROOT

(where the black line represents the search-order stack, now empty). Naming a
vocabulary makes that vocabulary the CONTEXT; if you say FORTH now, the

search order becomes
CONTEXT: FORTH

ROOT

ALSO pushes a copy of the CONTEXT vocabulary onto the stack; if you said ALSO
now the search order would become

CONTEXT: FORTH

ROOT

meaning, “Look it up in FORTH ; if that fails, try FORTH again; if that fails,
you’ve got a last chance with ROOT ; if that fails, then give up!”

If you further say META ALSO ASSEMBLER, the search order (which is displayed
if you type ORDER) will become

CONTEXT: ASSEMBLER
META
FORTH
ROOT

Finally, the command PREVIOUS pops the top of the search stack into CONTEXT,
dropping the previous CONTEXT. ‘

This may sound confusing, but is in practice quite straightforward if you don’t
try to take advantage of all the tricks that are in principle possible. Usually you
put in the search stack all of the vocabularies to be searched in a certain situation,
without worrying much about their order and without relying on CONTEXT (so
that the latter can be switched rather freely, without going every time through the
ALSO - PREVIOUS business). You explicitly make a vocabulary the CONTEXT—by
just naming it—only (a) when it’s a rather secret one that you want to occasionally
pull out of your hat to give a special meaning to the word that follows, or (b)

though it’s already in the back-up stack, you want to make sure that it will be
searched first.

The CONTEXT vocabulary and the rest of the search-order machinery only
have to do with where a word will be looked up. As mentioned above, newly
defined word are added to the current vocabulary—and there is only one CUR-
RENT vocabulary at any moment. The word DEFINITIONS makes the CURRENT
vocabulary be whatever CONTEXT is. Thus, if you say

5.18. The Forth glossary 69

EDITOR DEFINITIONS FORTH

the CONTEXT switches to EDITOR , then EDITOR is made the current vocabulary
(by DEFINITIONS), and finally the CONTEXT reverts to FORTH . Though the
search order still starts with Forth, the next definitions will be added to the
EDITOR vocabulary.

5.18 The Forth glossary

Probably the most useful piece of documentation to accompany a Forth system
is a glossary, i.e., a plain English description, arranged in dictionary form, of the
words that make-up the system itself.

The glossary provided at the end of this manual (Appendix G) consists of
two sections. The first documents those CAM-specific words that are meant to be
employed by the CAM users; the second section describes a number of general-
purpose Forth words that are specific to the present implementation, as well as a
few F83 words that deserve clarification.

Common-usage Forth words are documented in any of a number of Forth
manuals (cf. next section). Excerpts from the Forth-83 Standard—which specifies
standards for a number of fundamental words and constructs—are reproduced in
Appendix F. This standard is closely obeyed by the F83 implementation.

5.19 Further readings

Starting FORTH by Leo Brodie (Prentice-Hall, 1981) is an excellent practical in-
troduction to Forth, while Thinking FORTH, by the same author (Prentice-Hall,
1984), discusses the methodology that inspires this programming language. Inside
F83, by C. H. Ting (Offete Enterprises, 1306 South B. St., San Mateo, CA 94402;
1985) is a thorough description of F83’s internal structure. The book Mastering
Forth, by A. Anderson and M. Tracy (Brady Communications Co., 1984), de-
scribes Micromotion Forth—a commercial package based on the F83 model (and
thus having a close family relationship with the present implementation).

The complete specifications for the Forth-83 Standard (cf. Appendix F) are
available from the Forth Interest Group (P.O. Box 8231, San Jose, CA 95155).

The periodical FORTH Dimensions, published by the Forth Interest Group,
P.O. Box 8231, San Jose, CA, is a good source for news, applications, program-
ming techniques, literature listings, and software and hardware developments;
most of the above books can be purchased from the F.I.G. The Journal of Forth
Application and Research, published by the Institute for Applied Forth Research,
Inc., is a more academically oriented publication.

70

Chapter 5. A Forth tutorial

_1

_ 3

)

Chapter 6

The screen editor

As a preliminary to working on your own set of CAM experiments you should
familiarize yourself with the Forth screen editor, since you’ll be continually using
it.

6.1 Editing commands

As you enter the editor,! the contents of the selected screen are displayed in an
editing window, with the cursor somewhere on the screen. You can now move the
cursor to any point on the screen; you can change, insert, delete, or move text;
and then either move to another screen or exit the editor.

Above the editing window is a status line telling you the screen number, the file
name, and how far you are into the file (screen 0 is 0%, last screen is 100%). The
keyboard is no longer a control panel for CAM; rather, it has been turned into a
smart typewriter. Typing ordinary printing characters places them on the screen
at the current cursor position; the other keys are interpreted as special editing
commands; for example, will backspace and rub out the character it
backspaced over.

The editor has two modes, namely Insert and Noninsert (“overwrite”); you
can go from one mode to the other with the toggle command :INS . The current
mode is indicated at the end of the status line.? When you are in Insert mode,
typing a character will push the rest of the line rightwards, and characters at the
end of the line will be lost; similarly, typing will pull the rest of the line
leftwards, injecting blank characters at the end of the line.

While a screen is being edited, the changes are only made on a copy of it kept

1From the control panel, with [e] or EI (Section 4.5), or from Forth, .via EDIT and related
words (Sections 7.3).
2See Section B.1 for selecting which mode should be the default one.

71

72 Chapter 6. The screen editor

in a memory buffer. When one moves to another screen or leaves the editor, the
modified screen is saved to disk—the previous contents of that screen in the disk
file are overwritten. Up until the moment a screen is saved one can bring back
the unmodified version from disk by hitting (“Cancel all changes™).

It is important to always exit from the editor (using before removing
the diskette you are working on. This will ensure that all changes have been
saved—and saved on the right diskette.3

The following lists describe the editing commands. For the benefit of touch
typists, most commands that use a special key also have an alternate “control”
version that can be typed without moving the fingers far from the home position.
We have striven to retain the Emacs mnemonics® for most control keys; for ex-
ample, the function of the arrow key , and is duplicated by the
control characters [Ctrl-P|, [Ctrl-N|, [Ctrl-B|, and [Ctrl-F| (Previous line, Next
line, Back, and Forward).

The intended purpose of the screen editor is to handle screens, i.e., blocks containing
text (see Section 4.3). However, the editor can be useful on occasion for inspecting
blocks containing non-text material (for instance, to check that something was actually
written to a certain block of a data file by a program under test). In this case, the
editor screen may show all sorts of odd symbols; however, to each of the 256 possible
byte values there corresponds a unique representation—in the form of a single text or
graphic character—on the editor’s screen.

If such nonstandard use of the editor is desired, the auto-extend /auto-shrink feature
implied by [PGDN], [PGUP] may be disabled by typing AUTO-X OFF (see glossary).

3If there are fresh modifications in the screen buffer and you swap diskettes before leaving
the editor, the editor will save the screen buffer on the wrong diskette, possibly contaminating
its directory and destroying valuable data.

YEMACS is a text editor, originally written by Richard Stallman at MIT, that is widely used
in the scientific community.

3

6.1. Editing commands

73

| Keys l Function performed |

Esc Exit. Save the modified screen to the file and exit the
editor
INS Insert. Toggle Insert mode on or off

rl-pP

:

Previous line. Move cursor one line up.

Ctrl-N

Next line. Move cursor one line down.

Ctrl-B

Back. Move cursor one position left

NREE

Ctrl-F

Forward. Move cursor one position right.

&3]
2,
=)

Ctrl-E

End. Move cursor past the last nonblank character
of the current line

Ctrl-A

Beginning Move cursor to the beginning of the cur-
rent line.

1]

Ctrl-M

New line. Move cursor to the beginning of the next
line

TAB

o 0 A

Ctrl-1

Tab. Move cursor to the beginning of the next word.

BACKTAB

[

Backtab. Move cursor to the end of the previous
word.

|HOMm

Home. Move the cursor to the upper-left corner of
the screen.

|PGUP|

lCtrl-U|

Up one screen. Move to previous screen, saving cur-
rent screen to file. If the current screen is the last of
the file and is all blank, it is removed from the file
before you move.

|PGDN|

[Ctr1-V|

Down one screen. Move to next screen, saving cur-
rent screen to file. An attempt to move past the last
screen of a file (indicated by 100% in the status line)
automatically adds one blank screen to the file.

DEL [Ctrl-D[| Delete. Delete character under cursor and move the
rest of the line one position to the left
[RuBouT| [[Ctrl-H|| Rub out. Delete character before the cursor, and

move cursor back one position. In insert mode, the
rest of the line is moved left one position.

|Ctr1-Z|

Zap. Erase from cursor to end of line. The kill buffer
(see below) is not affected.

74

Chapter 6. The screen editor

[£1]

[Ctrl-L|

Left align. The cursor is thought of as dividing the line into
two “halves.” The right half is shifted leftwards until a non-
blank character appears under the cursor; the left half is not
affected. Useful for aligning definitions or comments.

[£2]

|Ctrl-R|

Right align. The opposite of Left align. The right “half” of
the current line is shifted rightwards until a nonblank charac-
ter touches the right edge of the screen.

£3]

[Ctrl-J]

Join. The opposite of Open. Join the left “half” of the current
line (i.e., from the left margin to the cursor position) with the
right half of the next line. The right half of the current line
and the left half of the next line are lost. All following lines
are pulled up.

Open. Break the current line into two “halves” at the cursor
position. The right half will make up a new line. All foliowing
lines are pushed down.

Kill line. Remove the current line from the screen; all fol-
lowing lines are pulled up. Lines deleted by consecutive uses
of Kill are accumulated in a buffer, from which they can be
retrieved by Yank; the maximum capacity of this buffer is 16
lines (one screenful). The contents of the kill buffer remains
available to be yanked until the start of a new series of (one
or more) consecutive Kills.

Cancel all changes. Cancel any changes made on the current
screen since last entering it; the screen is re-read from disk.

(£4] |[Ctrl-0]
[£5] |[[|Ctrl-K|
[£6] ||{Ctrl-X|
[£7] {[Ctxl-w|

Wipe. Fill the kill buffer with the current screen, without
destroying the screen’s contents.

ICtrl-YI

Yank. Insert at the current line the contents of the kill buffer.
The contents of the current line and all following ones are
pushed down to make room. The kill buffer can be Yanked as
many times as desired, possibly to different screens, or even
different files (by leaving the editor and then starting editing
a new file).

£9]

[Ctrl-8|

Search for string. Given a text string, start from the cursor
position and search forward through consecutive blocks until
the string is found. The string argument is typed in right

after |Ctrl-S}, hitting I_T—’_:l instead makes this command reuse

the previous string.

[£10]

[Ctrl-C|

Copy file. Copy current file to a new file. You’ll be asked to
type in the name of the new file; the default extension is the
same as that ef the current file. Once the copy is made, the
editor will automatically take you to the new file!

3

6.2. Date stamp 75

For convenience, we display below the layout of the editing commands that
are attached to the function keys

f1|| Left align || [£2] | Right align

£3| | Join f4| | Open

£5| | Kill £6| | Cancel all changes
£7| | Wipe £8| | Yank

£9| | Search £10| | Copy file

Some users have found it convenient to photocopy this layout and tape it to their
keyboard.

6.2 Date stamp

If you look at the first line of any of the present system’s source screens, you’ll
notice that it contains a “stamp” such as

04Jan87NHM

indicating when the screen was last written or modified, and by whom. This stamp
is automatically updated whenever one leaves the screen (by moving to another
screen or by leaving the editor) after having made any changes to it. Of course,
the system needs to know the date and the identity of the user—as explained in
Section B.1. The default name used in date stamps will be cam until you change
it.

The date stamp is added to a screen only if the first line begins with a backslash
(in particular, if the screen begins with one of the “comment” words \ or \S).

6.3 Shadow screens

The F83 Forth implementation provides support for shadow screens—a rudimen-
tary mechanism for using the second half of a file as screen-by-screen documenta-
tion for the first half.

Suppose you have a Forth program file (Section 4.3) consisting of 10 screens,
numbered 0-9. Add to this file ten more screens, numbered 10-19, with the
understanding that scieen 10 will contain comments or other text documentation
for screen 0, screen 11 for screen 1, and so forth—that is, each screen in the second
half of the file is treated as a “comment shadow” for the corresponding screen in
the first half. When you want to Joad the file, you will still load only screens 1
through 9 (as explained in Section 4.3, screen 0 cannot be accessed by the loader)
and ignore the second half of the file; but when you want to examine the file,
you’ll find on screen 13 extra documentation for screen 3.

76 Chapter 6. The screen editor

Most of the source files for the CAM system are in the above format.

Two editor commands, [ctr1-T] and [Ctr1-G] are meant to provide support
for this kind of file organization.

|Ctrl-T|| Toggle shadow. Toggle between a source screen and its shadow.

|Ctrl-G| [Get shadow line. Copy to the current line of your screen the corre-
sponding line from the screens’s “twin” (the shadow screen if this
is a program screen, and vice versa). Provides a convenient way of
copying source screen information into shadow screens, to be edited
into documentation.

Note that these commands have no way of knowing whether your file actually
contains shadow screens; they just work on that assumption, treat the file as
divided into two equal halves, and match corresponding screens in the two halves.

3

Chapter 7

Miscellaneous utilities

It is possible to program CAM entirely from the control panel, without ever con-
versing directly with the Forth interpreter. However, a number of miscellaneous
commands and utilities that pertain chiefly to system maintenance are not indi-
vidually attached to control-panel keys, and are meant to be used interactively at
the Forth-interpreter level. Some of these (seeing, listing, moving screens around,
etc.) are going to be valuable even to the most casual user.

7.1 Viewing and seeing

If you have the source code on line (see Section B.3), you can look at the definition
of any Forth word in the CAM system by using the VIEW command. For example,
VIEW DUP will list the definition for the CODE word DUP . Once you have accessed
the desired screen, you can use the following words to move to adjacent screens:

List the same screen again

List the next screen
List the previous screen (7.1)

| o|=)

Toggle between the current screen and its
shadow.

In addition to VIEW , which looks at the disk source, there is a decompiling
utility, SEE, which looks at the compiled version of a word (in memory) and tries
its best at reversing the compilation process. For example,

SEE LIST

will decompile the word LIST (try it!). This works well with COLON words,
CONSTANTS, VARIABLES, etc. For DEFERred words (execution vectors), SEE
knows how to call itself recursively to track down the definition. For CODE words

77

78 Chapter 7. Miscellaneous utilities

such as DUP, SEE will tell you that they are in machine code, but won'’t try to
disassemble it (cf. VIEW above).

If you are trying to trace the purpose of some Forth word and you are unable
to VIEW some of the words called by it, it's probably because they are in some
vocabulary that isn’t part of your current search order (Section 5.17). Until
you figure out the ONLY / ALSO business that this Forth implementation uses
for managing vocabularies, all you need to know is that you can find out what
vocabularies contain a given word such as SHOW (useful for listing Forth code to
the printer) by typing

VOC SHOW

Forth will respond by telling you that SHOW has definitions in both the FORTH and
SHADOW vocabularies. To VIEW its definition in the SHADOW vocabulary, type

SHADOW VIEW SHOW

To see a list of all vocabularies, type

vocs
To see a list of all words in a given vocabulary, say, SHADOW , type
SHADOW WORDS
To see the current search order, type
ORDER
Finally,
USED MY-WORD

will list all the words that use MY-WORD in their definition (cf. glossary).

7.2 The current file

We have seen that a file is automatically opened and made the current file when
it is accessed from the control panel via [E] or [L] (note that VIEW does not affect
the current file). From Forth, if you want to open a file called FOO.BAR you type

USING FOO.BAR

(or perhaps A:FO0.BAR if you wish to specify the drive). If no extension is specified,
USING will add the default extension EXP to the filename. As with @ and |L{in
the control panel, wildcard characters or no filename results in a directory listing.
The Forth words A: , B: , and C: can be used to change the default drive
selection.

To move one’s attention to a new file, one simply opens that file; the explicit
closing of a block file (cf. Section 4.3) is not required. Avoid using OPEN (the usual

7.3. Editing 79

F83 word for opening a file)—as it can produce unexpected results if followed by
the execution of NEW-EXPERIMENT or FORGET .

If the file name given to USING does not already exist, the program offers
to create it; the initial size of this file will be two blocks, corresponding to two
screens of text.

The word CAPACITY returns the number of blocks that make up the current
file.
To add 10 more blocks to the end of the file, simply type

10 MORE
To remove 2 blocks, you type
2 LESS

To insert 2 blocks right before the screen that was edited last (in order, say, to
insert some new text), type

2 INS-SCR

7.3 Editing

To enter the screen editor from Forth and edit, say, screen 7 of the current file,
type
7 EDIT

To re-enter to the editor from Forth,! just type ... (“dot-dot-dot”)—a Forth
word meaning “resume editing.”

There is an additional, “contents-addressed” way to enter the editor, namely,
by using the word FIX.

If XYZ is a word that has been compiled into the dictionary by loading a
screen file, the compiled version of the word will contain a pointer (called view
field) to the file and screen it “came from” (i.e., to its source); typing

FIX XYZ

will enter the editor with the cursor positioned right after the word XYZ . For
this to work, the relevant source file must be on-line on the expected drive (cf.
Section B.3), or you’'ll get an Open error message.

For example, the word FIX itself was loaded into the Forth dictionary from
the source file PC.4TH ; if this file is accessible, typing

FIX FIX

!Note that will return you to the Forth interpreter (rather than the control panel) if
you entered the editor from there.

80 Chapter 7. Miscellaneous utilities

will set you up for editing the definition of FIX . In a similar way, if the word
DUMMY was just loaded from the current file, typing FIX DUMMY will set you up
for editing its definition in that file.2

7.4 Loading

From the control panel, the commands |1]|and [L| allow one to load—i.e., submit
to the Forth interpreter (cf. Section 5.7)—an entire file or, when the command is
preceded ny a numerical argument, a single screen of that file. From Forth, to

load, say, screen 7 of the current file, type
7 LOAD

To load screens 7-9, type
7 9 THRU

In particular, to load the entire file you have to type
1 CAPACITY 1- LOAD

which, admittedly, is a bit awkward. Note that (a) screen 0 of a file can never
be loaded, and is usually reserved for comments; and (b) CAPACITY returns the
size, in screens, of the current file, so that a 10-screen file will yield a CAPACITY
of 10 but will have its screens numbered 0 through 9!

7.5 Listing

Files having the extension DOC are ordinary PC text files, and should be listed
using the appropriate DOS utilities.

To inspect the contents of a Forth block file (Section 4.3), the simplest way is
of course to use the screen editor (for blocks that contain arbitrary data rather
than text, cf. end of Section 6.1).

From Forth, 7 LIST will list screen 7 of the current file on the monitor
without going through the screen editor. This will work well only for text screens.

The first line of a text screen usually contains a comment describing the con-
tents of that screen. The phrase

(first screen) (last screen) INDEX

produces an “index” consisting of the first lines of all screens of the current file
within the specified range.

2 FIX can find source code in one of the F83 or CAM source files; otherwise it looks in the
current file. If after loading a word you change the current file, FIX will look for that word in
the “right place” but in the wrong file.

3

7.6. Moving screens around 81

Anything that is sent to the monitor by the Forth interpreter can be addition-
ally routed to the printer, using PRINTING . Thus, if you want a hardcopy of the
index of screens 10-15, you type

PRINTING ON 10 15 INDEX PRINTING OFF

and the index will be sent both to the screen and to the printer.

The two “listing” words SHOW and LISTING send their output only to the
printer, preceded by a control code that sets the printer to compressed mode (132
characters/line); check that the Forth system knows what kind of printer you are
using (cf. Appendix B.2.4).

SHOW is used to print a listing of any consecutive portion of the current file,
with the following syntax

(first screen) (last screen) SHOW

(If you want to print the whole file, type 0 CAPACITY 1- SHOW.)

On the other hand, LISTING (with no arguments) assumes that the current
file is organized as “source” and “shadow” screens (cf. Section 7.3), and produces
a complete listing of the file with source and shadow screens side-by-side. SHOW
can also be used in this fashion, by saying, for example, 1 10 SHADOW SHOW .

7.6 Moving screens around

The editor commands Kill, Wipe, and Yank are adequate for moving around a
few words or lines, perhaps up to one screenful; the Copy command is used for
making a copy of the entire current file to a newly created file. For moving several
screens, CONVEY is useful: to move screens 3-10 of file SOURCE.EXP to the current
file, starting at screen 12 (and thus overwriting screens 12-19 of the current file),
you type

FROM SOURCE.EXP 3 10 TDO 12 CONVEY

CONVEY can also be used, of course, to move screens within the same file. For
overlapping source and destination ranges, CONVEY does the right thing.

The clause FROM SOURCE.EXP makes SOURCE.EXP the from file (“from” and
“current” are two distinct “slots” managed by F83 for dealing with whatever files are
relevant at the moment); if SOURCE.EXP had already been declared as the from file,
this clause may be dropped.

Note that, when you open a file, the from “slot” (as well as the current “slot”) is
assigned by default to this file; thus

3 10 TO 12 CONVEY

82 Chapter 7. Miscellaneous utilities

(with no explicit FROM clause) will copy to screens 12-19 of the current file screens
3-10 of the same file, provided that you have not reassigned the from “slot” since you
opened the current file.

CONVEY is not allowed to change the length of the destination file. If this file
is too short, it must be lengthened first (using MORE , for instance) so that the
screens to be conveyed may fit in.

7.7 Moving files around

In addition to the above utilities, you can always use the utilities provided by
DOS for erasing, copying, and renaming files, etc. As mentioned in Section 4.2,
the DOS command interpreter can be accessed from within CAM Forth.

Part 111

Writing and running
experiments

83

3

Chapter 8

The make-up of an experiment

The purpose of this chapter is to make you familiar with the overall structure of
an experiment file and with what sort of things may appear in it. The available
resources are discussed more systematically in the following chapters.

For a good understanding, you'll have to refer quite often both to the book
Cellular Automata Machines mentioned in the introduction—briefly, the “CAM
book” —and to the glossary (Appendix G) at the end of this manual. The former
provides the conceptual background for much of the present material; references to
it use a notation of the form ‘{CAM Book 7.2)’ for “Section 7.2 of the CAM book.”
The latter provides concise technical definitions; references to it are implicit, that
is, all Forth words (which are set in a typewriter font) mentioned in this book that
are not of purely local interest will be found listed and explained in the glossary.

8.1 A minimal experiment

Assuming the work disk mentioned in Section 1.2 is on line, from CAM’s control
panel type @ba.relife (that’s an upper-case E) to examine, through the screen
editor’s window, the source code for the BARELIFE experiment mentioned in
Section 2.4 (cf. [CAM Book 3.1,5.3]). Figure 8.1 is a verbatim reproduction of
what you see in the window; the entire source for this experiment consists ofjust
that one screen.

Before discussing the contents of the screen, a few words about its layout—
which is meant to enhance readability. We have chosen to set flush with the left
edge of the screen those commands that are to be directly executed by the Forth
interpreter, while words that are to be compiled into the dictionary are aligned
vertically on the right. Thus, by “thumbing” the left edge of the screen you see
what Forth is being asked to do; by thumbing the right edge, you see what it is
being taught—and thereafter expected to know. These conventions are followed
(somewhat loosely) throughout this manual.

85

86 Chapter 8. The make-up of an experiment
Screen 1 BARELIFE.EXP (100%>

\ BARELIFE (LIFE, with no frills) 04Jan87tmt

NEW-EXPERIMENT

N/MOORE
: 8SUM (-- n)
N.WEST NORTH N.EAST
WEST EAST
S.WEST SOUTH S.EAST
T U
: LIFE

8SUM { 0 O CENTER 1 0 0 0 0 O } >PLNO ;

MAKE-TABLE LIFE
HALF O RND>PL

Figure 8.1: Source screen for the BARELIFE experiment

The first line of code, NEW-EXPERIMENT , resets CAM’s hardware and software
to a known, repeatable default state (see Section 9.12.for more details). In partic-
ular, (a) all the Forth words added to the dictionary by the previous experiment
are wiped out, (b) the bit planes are cleared, (c) the look-up tables are filled with
zeros, (d) the color map defaults to the “standard” map STD-MAP (Section 8.2),
and (e) all the neighbor “probes” (as explained in [CAM Book 7.2], which you
may want to re-read now; Section 9.2 of the present manual can be used as a
quick reference to neighborhoods) are disconnected.! The screen is black, and
would remain black if you issued Step commands at this point.

The second line, N/MOORE , is a neighborhood assignment, telling both software
and hardware that you plan to use the Moore neighborhood[CAM Book 7.3.1).
The hardware will connect the relevant neighbor probes{CAM Book 7.2], while the
software will make the corresponding neighbor names available as Forth words to
be used in defining the rule. We recall that CAM consists of two “halves,” namely
CAM-A (planes 0 and 1) and CAM-B (planes 2 and 3). For the moment it will be

1More precisely, they are parked on the user inputs of the external connector{CAM Book
7.3.1].

3

1

8.1. A minimal experiment 87

convenient to imagine that only CAM-A is present; then, the neighbors that are
connected and made available as Forth words by the N/MOORE assignment are

N.WEST NORTH N.EAST
WEST CENTER "EAST CENTER’
S.WEST SOUTH S.EAST

where the unprimed variables refer to bits in plane 0. The primed variable
CENTER’ refers to a bit in plane 1; our LIFE rule will have no use for it.

The word 8SUM defines a function—namely the sum of the values of the
eight nearest neighbors—which will be used in defining the rule itself. (The pretty
layout of these eight neighbor words in the Forth text is of course only of mnemonic
value; we could have typed them one after the other. Their order is irrelevant,
since we add them all up.)

The word LIFE provides an algorithmic description for the “life” rule—in
terms of the behavior of a single, generic cell (all cells will obey the same rule).
With reference to Figure 8.1, from the values of a number of neighbors (namely,
the eight nearest neighbors, through the word 8SUM, and the center cell, through
the word CENTER) the algorithm (embodied in the word LIFE) computes a 1-bit
result, using a CASE construct (the one with curly braces; see Section 5.13); the
word >PLNO specifies that this result is meant as the “new-state” bit for plane 0.

The line before the last, MAKE-TABLE LIFE, tells the software to translate the
above description into tabular form|{CAM Book 7.6] and download the resulting
string of 0 s and 1 s—one “new-state” bit entry for each possible neighbor
configuration (see [CAM Book 7.2] and Section 9.3 for details)—to CAM’s look-up
tables. Only at this moment is CAM ready to run “life,” as in Section 2.4.

Thus, it is not the Forth word LIFE as such that CAM will execute 65,536 times
(256x256) per step. LIFE is merely a table descriptor[CAM Book 4.2,7.6], and is
executed by the PC once for each entry of CAM’s lookup tables, that is, 212=4096
times;? this is done once and for all while loading an experiment, before CAM even
starts running. This “computational investment” may take a few seconds, but
will be handsomely repaid every time CAM takes a step: by having precomputed
results available in the lookup tables, the amount of “thinking” CAM has to do in
real time in order to update a cell is reduced to a minumum.

When you start writing your own CAM experiments, if may happen that any
initial configuration will vanish after one step. Before looking for bugs in the rule,
check that you do have a MAKE-TABLE command; without it, CAM can’t possibly
know anything about your rule.

In conclusion, the minimal requirements for a complete, repeatable experiment
setup are

?Even though we are explicitly using only 9 neighbors, the tables are generated for all possible
values of the 12 available address lines (Section 9.1), some of which are, in this case, irrelevant.

88 Chapter 8. The make-up of an experiment

o The NEW-EXPERIMENT command,

e a neighborhood assignment, |

e a table descriptor for the desired rule, and
e a MAKE-TABLE command.

Of course, before running the experiment one will have to put in the bit-planes a
suitable initial pattern. The last line of Figure 8.1, HALF 0 RND>PL , fills bit-plane
0 randomly with half Os and half 1s.

Practically all of the experiments of Chapters 1-10 of the CAM Book are
based on this minimal format; the variety of behavior illustrated there arises from
a suitable choice of rules and initial conditions—rather that from the use of more
advanced hardware or software CAM resources.

8.2 The standard color map

In running BARELIFE you’'ll have noted that live cells are shown green on a black
background. In fact, the default, or standard, color map—called STD-MAP —uses
green for any cell that contains a 1 in plane 0 only, blue for plane 1 only, and
red for cells having a 1 in both planes[CAM Book 3.2]; in addition 1 s in planes
2 or 3 turn on the “intensity” beam, thus lightening a cell’s color.

Color-map: STD-MAP
Plane | Monitor line | Pixel -

0|1 I|R|G|T3—color

o| o0 || * black

o 1| * o | blue (8.1)
1101 = ® green

1] 1 l*x]e red

* ‘On’ when planes 2 or 3 are ‘on’.

This map is convenient when most of the action is in planes 0 or 1, as in many
simple (and not so simple) experiments. Later on (Section 9.6) we shall discuss
how to define custom color maps.

8.3 Small changes

You may now start from a familiar situation, such as the above BARELIFE
experiment, and try to make a few small changes or additions.

3

8.3. Small changes 89

To avoid spoiling your distribution file BARELIFE.EXP , copy it first to a new
file, say, PLAY.EXP ; a few keypresses from the control panel will do (cf. Section
6.1):

e Type @barelife to visit the first file.

o Type play to copy this file to a new file called PLAY.EXP.

e As soon as the copy is ready the editor will take you directly to screen 1 of
the new file; you may safely play with it.

You'll certainly be tempted to try some variants of “life,” for instance per-
muting or complementing some of the 0 s and 1 s that appear in the CASE list
(between braces in Figure 8.1). After making each change, escape from the editor
with , load the PLAY file again (using) and run a few steps to see the

results.

Suppose, now, that you want to add the ECHO feature[CAM Book 3.2] to
“life;” that is, at each step, as CAM overwrites the state of plane 0 with a new
state as specified by LIFE, the old state should be saved in plane 1—so that this
plane always reflects the situation of plane 0 one step before.

In cAM Forth, one way to achieve this is to add (a) a separate table descriptor
for the evolution of plane 1 and (b) a separate MAKE-TABLE command to translate
this descriptor and write the resulting information to CAM’s lookup tables:

: ECHO
CENTER >PLN1 ;
MAKE-TABLE ECHO

Another way is to replace the LIFE descriptor by one that specifies the evolution
of plane 1 as well[CAM Book 7.6], as follows

: LIFE (with ECHO)
8SUM {0 O CENTER 1 0 0 0 0 0 } >PLNO
CENTER >PLN1 ;

With this table descriptor, the command MAKE-TABLE LIFE will fill both PLNO
and PLN1 columns of the lookup tables. Similar considerations apply to the
TRACE feature[CAM Book 3.3, defined as follows

: TRACE
CENTER CENTER’ OR >PLN1 ;

(with TRACE, a bit in plane 1 is turned on if the corresponding bit in plane 0 was
on—as with ECHO—but then it stays on, so that moving objects in plane 0 leave
a continuous trace on plane 1).

90 Chapter 8. The make-up of an experiment

Note that the words ECHO and TRACE (of plane 0 onto plane 1), as well as
FREEZE and BARE (two more handy rule components which respectively “freeze”
and “keep clear” plane 1’s contents) are predefined in the CAM software. Thus, if
you want plane 1 to “hold on” to whatever pattern you choose to store there—
while plane 0 runs a rule—it is enough to put the command

MAKE-TABLE FREEZE
in the source file, since the definition

: FREEZE
CENTER’ >PLN1 ;

is already present in the CAM Forth dictionary. You use BARE in a similar way
to restore column PLN1 of the lookup table to its default, “all zeros” state (cf.
8.1).

8.4 Customizing the control panel

We have seen how to change some aspects of a rule—for instance to go from “bare
life” to “life with echo” to “life with trace” and back to “bare life"—by editing
the experiment file and loading it again. This, however, re-initializes the whole
experiment, clearing whatever pattern you have in the bit-planes.

Since in this case all you want to do is modify the lookup tables, a better way
is to press the|f|key to go to the Forth interpreter, type, say, MAKE-TABLE ECHO,
and go back to the control panel via the key. Wouldn’t it be much easier if
by just pressing a control-panel key one could switch on-the-fly from one variant
of the rule to the other? '

In cAM Forth, the UNSHIFTED, SHIFTED, and CONTROL versions of each key
are permanently associated with standard CAM or PC functions, as documented
in Parts I and II. On the other hand, the alternate (A1t-) version of each key (ob-
tained by pressing that key while holding the ALT key down) may be temporarily
attached to custom, user-defined functions through the “alias” mechanism ex-
plained below.

Suppose you want to devote the key to turning on the TRACE mode.
To attach the command MAKE-TABLE TRACE to this key, you first define a new
Forth word expressing that command, and immediately after this definition you
write ALIAS T, as follows

: Trace
MAKE--TABLE TRACE ; ALIAS T

We have chosen the name Trace (in lower case, to distinguish it from TRACE) for
mnemonic reasons; any other name would do. From this moment, every time you

-

-y

3

3

8.5. Props 91

type from the control panel the word Trace is immediately executed—
just as if you had typed it from the Forth interpreter.

As long as they are in force, custom control-panel commands have exactly
the same status as standard commands.? In particular, after attaching the word
Trace to the key as above, the ALTERNATE menu, which you get by
typing 5[m] (Section 2.2) and is initially empty, will display the item

T Trace

Moreover, the name of this custom control-panel command—namely Trace —
will be echoed on the terminal whenever you hit the key from the control
panel, exactly as it happens for the standard commands.

A custom command remains in force until you attach a new custom command
to the same key, or execute NEW-EXPERIMENT (in which case the key to which it
was attached reverts to “Undefined”).

Aliases are liberally used in the experiment of Figure 8.2. Two alternative
rule-components for plane 0 are defined; one is the usual LIFE, the other, called
OTHER-LIFE , is a slight variation on the same theme. For plane 1 we have the
choice between BARE, ECHO, TRACE, and FREEZE.

Note that, if we ignore for a moment the last line, this experiment file gives
a lot of definitions but does not actually send any tables to CAM. Once the file
is loaded and the happy-face prompt reappears, it will be your responsibility to
select a rule, by typing, for example, [A1t-0|[A1t-E| for “other-life with echo.”

To make sure that at the beginning of the experiment a nonvacuous rule will
be present in CAM, the last line of Figure 8.2, namely Life Bare , makes an
initial selection (“plain life”) for you, just as if you had hit the custom keys
[A1t-L|[Alt-B| :

Run the experiment and play with the custom keys just introduced. Instead
of a random soup as an initial configuration, try also one containing glider guns
(file GUNS.PAT), which you can load into plane 0 by typing 0@ guns .

8.5 Props

If you are giving a critical demo, you don’t want to spend your time fumbling
with keys or trying to remember what you had called a certain pattern file to be
used in the experiment.

Suppose, for example, that you intend to play the glider-breeding experiment
discussed in[CAM Book 3.4]. You want to run “life” starting from a primeval

3In fact, the standard commands of CAM’s control panel were attached to their keys by the
very same “alias” mechanism, during system generation. Look, for example, at the source file
CAM-KEYS.4TH.

92 Chapter 8. The make-up of an experiment
Screen 1 VARLIFE.EXP (100%)
\ Life variations 05Jan87tmt
NEW-EXPERIMENT N/MOORE : : 8SUM
N.WEST NORTH N.EAST
WEST EAST

S.WEST SOUTH S.EAST
R EEEE.

: LIFE
8SUM {0 O CENTER 1 0 0 0 0 0 } >PLNO ;
: OTHER-LIFE
8SUM {O O CENTER 1 11 0 0 0 } >PLNO ;
: Life MAKE-TABLE LIFE ; ALIAS L
: Other-life MAKE-TABLE OTHER-LIFE ; ALIAS O
: Bare MAKE-TABLE BARE ; ALIAS B
: Echo MAKE-TABLE ECHO ; ALIAS E
: Trace MAKE-TABLE TRACE ; ALIAS T
: Freeze MAKE-TABLE FREEZE ; ALIAS F

Life Bare

Figure 8.2: Source screen for LIFE variations.

soup, and after a second or two you want to AND the pattern on the screen with
a circular mask, thus erasing everything except the central portion of the picture.
From the shores of this “island,” free-swimming gliders are likely to emerge.

The idea is to have the experiment start not only with the LIFE rule in the
lookup tables and a few custom keys defined, but also with the appropriate initial
configuration already in plane 0 and the desired mask pattern already stored in
planes 0’s buffer. When your audience is ready, you hit E] to start running. After
a few seconds, without stopping the simulation, you hit the custom key to
mask out the desired portion of the screen; a few gliders will hopefully emerge. Hit
the custom key to repopulate plane 0 with a new random configuration:
in this way, several breeding trials can be shown in close succession by alternating

end [ATE-1

Here is the relevant portion of an experiment file for this (we assume that
LIFE has already been defined):

: Mask O AND>PL ; ALIAS M
: Random HALF O RND>PL ; ALIAS R

OPEN-PATTERN DISK.PAT \ Open desired pattern file
0 FILE>PL \ Move patt. from file, via plane O

)

=

8.5. Props 93
0 PL>PB X to buffer 0
MAKE-TABLE LIFE \ Compile and download lookup tables

MAKE-TABLE ECHO

Random \ Start with random soup

Refer to the glossary for a detailed explanation of the new Forth words used here.

Briefly,

Mask will AND buffer 0 to plane 0, and is attached to the key.

Random will populate plane 0 with 50% randomness (the first argument of
RND>PL is the expected number of 1 s; one-half of 256 X256 is a round 8000
in hexadecimal, or 37,768 in decimal—and is predefined for convenience as
a constant called HALF), and is attached to the key.

OPEN-PATTERN creates a file control block for a pattern file (in this case
DISK.PAT) and makes it the current pattern file, i.e., the one to which
operations such as FILE>PL implicitly refer.

FILE>PL with argument 0 moves this pattern from its file to plane 0, and
similarly PL>PB moves it from plane 0 to plane 0’s buffer (no words are
provided in cAM Forth for moving a pattern directly from disk to a plane
buffer).

Note that, although we have attached Random to a control-panel key,
nothing prevents us from also using it from the interpreter level, as we do
in the last line in order to start the experiment with a random soup already
on the screen.

Before being filled with the random soup, plane 0 will for a short time contain
the disk pattern (in transit for buffer 0). To avoid distracting your audience (the
pattern would briefly flash on the CAM screen), you can momentarily inhibit the
CAM display and then restore it by using the commands TRUE INVISIBLE and
FALSE INVISIBLE.

The CAM words that are most likely to be useful in creating custom commands
are discussed under the following glossary headings

ALTIAS ARG ARG?

AREA AND>PL NOT-PL RND>BUF

OPEN-PATTERN FILE>IMAGE FILE>PLN

MAKE-CMAP COLOR-MASK SHOW-FUNCTION SHOW-STATE
MAKE-CYCLE NEXT-STEP STEP

SHIFTS

94 Chapter 8. The make-up of an experiment

EVENT-COUNT
OPEN-DATA
OPEN-TABLE MAKE-TABLE

8.6 On-line analysis

Let us consider, for a change, the “brain” rule of [CAM Book 6.1]—a neural
network whose neurons communicate with their neighbors by immediate contact.
A 1 in plane 0 means that the corresponding neuron is firing; a 1 in plane 1
means that the neuron is in a refractory state (“recovering”). The rule is repeated
here in Figure 8.3.

If we start this rule with 90% of the neurons firing, this fraction will quickly
drop; if we start with 1%, this fraction will climb. In either case, the fraction will
converge toward an equilibrium value of approximately 2%. We'd like to monitor
in real-time the number of neurons that are firing, by literally counting them at
each step. By plotting this number vs time, one can get an idea of how fast the
system approaches equilibrium, and of the typical size of the fluctuations about
equilibrium.

The firing of a neuron is a simple example of a cell event, i.e., of a situation
that can be recognized by local and uniform mechanisms similar to those used for
updating a cell (see Sections 9.6 and 9.7 for more details).

CAM comes equipped with a real-time event counter, i.e., one that can count
cell events at the same rate as they occur. For design simplicity, the input of this
counter is permanently connected to the I {“intensity”) output of the color map;
that is, at the end of each active step the number stored in the counter tells us
how many intensified pixels appeared on the screen during that step.

The main programming issue, then, is how to translate occurrences of the
desired kind of cell event into 1 s on the I line. In the above “brain” case the
events to be counted are just the 1 s in plane 0; thus, it is sufficient to use a color
map where the I line directly reflects the contents of plane 0. Clearly, the IRGB
color map (Section 3.2) will do.

A second issue has to do with the proper reading of the counter. During each
active step (in which CAM scans and updates the entire cell array) CAM’s hardware
counter is also updated—as the sought-for events are encountered.? At the end of
the step, the contents of this hardware counter is transferred to a count register in
the PC. In what follows, by the ‘(event) count’ or the ‘value of the (event) counter’

“During idle steps, in which caM displays but does not update the cell array, no counting is
done.

3

3

3

8.6. On-line analysis 95
Screen 1 BRAIN.EXP (100%)
\ Monitoring the BRAIN 04Jan87tmt
NEW-EXPERIMENT N/MOCRE ’ : STIMULUS

NORTH SOUTH WEST EAST N.WEST N.EAST S.WEST S.EAST
+ 4+t
{0010000001};
: BRAIN
STIMULUS CENTERS O= AND >PLNO CENTER >PLN1 ;
MAKE-TABLE BRAIN
MAKE-CMAP IRGB-MAP : FUD.
0 0 AT (UD.) TYPE-S 8 0 AT ;
: COUNTING
STEP EVENT-COUNT FUD. ;
: Counting DARK 8 O AT NEW-EVENTS STEP
MAKE-CYCLE COUNTING ; ALIAS C
: Normal DARK IDLE EVENT-COUNT FUD.
MAKE-CYCLE STEP ; ALIAS N

Figure 8.3: Source screen for monitoring the firings of BRAIN.

we shall mean the contents of this software register, which is readily accessible
and remains constant from the end of one active step to the end of the next one.

We also have to decide what to do with the event counts as they are read. We
could accumulate them in a memory buffer of reasonable size, and once in a while
flush this buffer to disk (Section 9.11); such a permanent record may be used for
off-line analysis. We could plot them vs time as they come—it is even possible
to use a spare bit-plane of CAM as a real-time plotting device (see sample file
Q2REOS.EXP). In the present case, however, we will just print these counts on the
terminal. Thus, we’ll have to tell the system that the default action attached to
one tick of the cellular-automaton clock (cf. Section 9.9), namely “step,” should
be replaced by the sequence “step, read count, print count.” An appropriate setup
for the above experiment is given by the Forth screen of Figure 8.3.

The first part of this screen, up to MAKE-TABLE BRAIN , is by now routine;
the command

MAKE-CMAP IRGB-MAP

makes CAM use the IRGB color map (Section 3.2), so that the contents of plane
0 will go verbatim to the I beam, to which the counter is attached.

The word COUNTING defines a run cyclefCAM Book 11.5] suitable for our
counting needs (see Section 9.9). In particular, STEP asks CAM to start a new

96 Chapter 8. The make-up of an experiment

step as soon as possible (the previous step may still be in progress at the mo-
ment STEP is executed) and waits until the new step is actually ready to start;
EVENT-COUNT picks up the value of the event counter and places it on the the
stack as a double number.® Finally, FUD. prints this number on the terminal in
a special way that will be discussed in a moment together with the words DARK
and AT —which also have to do with printing.

The word Counting , attached to the custom key [Alt-C|, contains
(besides the phrase NEW-EVENTS STEP , discussed below) the command
MAKE-CYCLE COUNTING , which replaces the default run cycle by the custom
one just defined by us{CAM Book 11.5]—namely COUNTING . The custom key
restores the default run cycle—which is simply STEP —after performing
some final servicing of the counter.

Load this experiment, put a random configuration in plane 0, and run the rule.
After a few seconds hit [A1t-C| to turn on the counting feature: as the simulation
proceeds, a stream of numbers will start pouring out of the terminal

1990 1981 2007 1962 1991 1970 2012 ...

where each number represents how many cells were firing at the corresponding

step. To turn off this stream, hit |[A1t-N|.

An astute observer may notice that when one stops the simulation while
COUNTING is active, the count last printed on the screen does not refer to the last
step executed but to the previous one: one count still has to come out. This oc-
curs because the count is double-buffered, so that a new step can be started before
analysis of the previous step is performed.® The existence of this double-buffering
mechanism (a first-in/first-out pipeline with a two-item capacity) also explains the
need for the phrase NEW-EVENTS STEP in the above definition of Counting —
which serves to prime the pipeline—and the phrase IDLE EVENT-COUNT FUD. —
which pulls the last count out of the pipeline.

Details on the stepping process, the make-up of the run cycle, and counting
options are given in Sections 9.9 and 9.7.

The reason why we have to make recourse to a special printing procedure is
that the DOS terminal output routines are very inefficient, and would take over
a sixtieth of a second to print the count on the screen, thus slowing down the
simulation. FUD. makes use of BIOS routines that are much faster.

5A Forth cell, consisting of 16 bits, can represent an unsigned integer in the range 0-65,535
(O000—FFFF in hex). On the other hand, the number of cells in the array—and thus the maximum
value of an event count—is 65,536, so that two cells are needed to store this count. If you know
for some reason that a count of 65,536 can never arise, you can convert the double number to a
single number using DROP ; otherwise you must use double-precision arithmetic (Section 5.16).

This arrangement allows one to do a significant amount of analysis even while caM is running
at full speed.

3

-3

"3

8.7. Data logging 97

The F83 word (UD.) converts a double number on the stack to a character string.
TYPE-S prints this string starting from the current cursor position. Since the BIOS
routine called by TYPE-S is not smart enough to start a new line when the current line
is full, we have to explicitly position the cursor before each count is printed, using AT
preceded by column and row number. We chose to position the cursor at the upper-left
corner of the screen when printing the count, and reposition it 8 characters to the right
for the normal control-panel messages. DARK clears the screen of any garbage left over
by previous control-panel activity.

In spite of the above precautions, you'll notice that once in a while CAM still
idles for one step when COUNTING is active: some terminal-output activity is
keeping the PC busy right at the moment when a new step should be scheduled,
and the step is missed.

The essential tasks that the PC must perform at each step in order to keep
CAM running at full speed are handled by interrupts, are essentially invisible to the
user, and take up only a small fraction of one-sixtieth of a second (the duration of
one CAM step). If you avoid getting bogged down in input/output, there is plenty
of time left during each step for the PC to do substantial data analysis using a
custom run cycle.

If at any time the on-line data analysis tasks performed by the PC should take
longer than one CAM step (e.g., when you have to transfer a memory buffer to
disk), or are poorly timed (as in the above case) nothing bad will happen: cAM
will wait until the PC is done (in increments of one step time) and the simulation
will just slow down.

8.7 Data logging

In the course of an experiment it may be useful to record on disk in a continuous,
incremental way some of the data produced by real-time analysis (cf. previous
section), or read from disk a stream of data to be used as time-varying parameters
for the experiment itself.

The CAM software provides basic interfacing with data files for these and sim-
ilar uses (see Section 9.11 and OPEN-DATA in the Glossary). The experiment
Q2REDS provides a serious example of use of data files. Here we will briefly illus-
trate the most basic concepts.

In the BRAIN experiment of Section 8.6 we showed how to count the number of
cells that are firing at each step, and how to display the sequence of such counts
on the PC screen. Suppose, now, that we want to make runs of 1024 steps of
BRAIN and log the resulting counts, step by step as they come, on a disk file for
subsequent analysis.

The new version of the experiment is listed in Figure 8.4.

98 Chapter 8. The make-up of an experiment

First, we have to create the data file that will hold the counts. Since these
counts come as double numbers (cf. Section 5.16), and thus consist of four bytes
each, the experiment will generate 4096 bytes of data, equivalent to 4 blocks

4 CREATE-FILE BRAIN.DAT
Then, before the experiment starts running, we open this file as a data file
OPEN-DATA BRAIN.DAT

Among other things, this reserves a block-size buffer in memory to temporarily
hold data on their way to the disk (we don’t want to slow down the simualtion by
making a separate disk access at every step), and initializes the associated pointer
to point to the very beginning of the file.

In Figure 8.3, every time that during the course of the experiment we got a
count from EVENT-COUNT we displayed it on the screen by means of the word
FUD. . Here, the word PUT-COUNT gets the event-count data and appends it to
the currently open data file as a record consisting of two Forth cells (i.e., the size
of a double number).

The experiment is set up so that the run cycle runs the entire 1024 steps
and closes the data file { CLOSE-DATA) at the end of it, thus insuring that the
memory buffer is safely stored to disk. Load this experiment and hit the E] key.
The simulation will run the 1024 steps (the disk light will blink a few times)
and then stop by itself, with the logged counts recorded in the BRAIN.DAT file.
REWIND brings the file pointer back to the beginning of the file, ready for another
run.” A new run will, of course, overwrite the data. In between runs, you may
want to examine the logged data, do some further analysis on them, or copy them
to another file (cf. Section 4.2).

"In spite of its the name, CLOSE-DATA actually leaves the file open.

3

_ 3

8.7. Data logging

Screen . BRAINLOG.EXP (100%)
\ Monitoring the BRAIN 04Jan87tmt
NEW-EXPERIMENT N/MOORE : STIMULUS

NORTH SOUTH WEST EAST N.WEST N.EAST S.WEST S.EAST
+++++++ {001000000} ;

: BRAIN
STIMULUS CENTERS O= AND >PLNO CENTER >PLNi ;
MAKE-TABLE BRAIN
MAKE-CMAP IRGB-MAP : PUT-COUNT
EVENT-COUNT PUT-DATA PUT-DATA ;
: LOGGING

NEW-EVENTS STEP 1023 0 DO
STEP PUT-COUNT LOOP
IDLE PUT-EENT STOP
CLOSE-DATA REWIND ;
4 CREATE-FILE BRAIN.DAT OPEN-DATA BRAIN.DAT
MAKE-CYCLE LOGGING HALF O RND>PL

Figure 8.4: Source screen for logging the firing counts of BRAIN.

99

100

Chapter 8. The make-up of an experiment

Yy 3 3

3

Chapter 9

Resources

The present chapter briefly reviews—directly or through pointers to other
material—the hardware resources of CAM and the software commands that control
them. Most of these resources are adequately discussed elsewhere (the previous
and following chapters of this manual, the glossary, the CAM Book, and the anno-
tated experiment files). Here we provide connecting material and some technical
details.

9.1 The lookup tables

As explained in Chapter 7 of the CAM Book, CAM coumsists of two independent
halves, called CAM-A and CAM-B, which may be used separately or coupled to-
gether. Each half, consisting of two bit-planes, has its own lookup table (Figure
9.1)—whose main function is to to turn the data currently in the bit-planes into
new data according to a specified dynamics. Each entry of this table consists of
four bits; thus, the table can be visualized as four columns of data. The table
contains 65,536 (=2') entries (or rows); a particular entry is accessed by a given
combination of 0 s and 1 s on the table’s 16 address lines. Depending on the
currently selected neighborhood, the sixteen bits that make up a lookup table’s
input may come from any of several sources (Table 9.1):

o Some signals originate from within the CAM card, and are extracted from

— The two bit-planes of this particular half CAM.
— The two bit-planes of the other half CAM.
— The horizontal and vertical address of a cell (spatial phases).

e Some signals have an external origin:

101

102 Chapter 9. Resources

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr

addrl0
addrll

addrl2
addrl3
addrl4
addr1b

WOO~IDAhU W —O

LV L]l

RN

PLNO PLN1 AUXO AUX1

Figure 9.1: The lookup table of caAM-A (for that of cAM-B, replace 0 and 1 in the output
labels by 2 and 3). The sixteen address lines can be connected to a variety of signals.

— Temporal phase signals are supplied by the PC; they are generated in
real-time by the CAM software as specified by the run cycle (Section
9.9).

— Signals coming from the most disparate sources can be fed to the user
connector (Chapter 10); these sources may include other CAM cards,
special-purpose hardware attachments, a video camera, etc.

e The above signals are used for deciding which table entry to read, instant
by instant, during a simulation. There are also provisions for deciding in
which table entry to write something—but this only concerns the low-level
software routines in charge of downloading the tables’ contents.

In turn, the four bits that appear at the table’s output may go to different desti-
nations:

e The first two columns of a table (also called regular tables) are generally used
for determining the new state of the two bit-planes of the corresponding CAM

half.

e The remaining two columns (auxiliary tables) may

— Be left unused.

9.2. Neighborhoods 103

— Replace the regular tables in determining the new state of the two
bit-planes (Section 9.8).

— Be used for computing an output function (Section 9.7), to be used in
conjunction with the color map.

One of the functions of the CAM Forth software is to provide simple and intuitive
ways to exercise the above options.

9.2 Neighborhoods

The CAM neighborhoods provide a way of physically connecting different subsets
of signals to the tables’ inputs, and attaching appropriate mnemonic names to the
signals so selected, as explained in Chapter 7 of the CAM Book. The generally
useful neighborhood assigments are listed in the following tables.?

MAJOR NEIGHBORHOODS

Ia.ddr "N/MOOREI N/VONN | N/MARG [N/MARG- PHlN/MARG-HVl N/USER |

0 ==[JCENTER [CENTER [CENTER |CENTER |CENTER |CENTER |
1 ==||[CENTER’ |CENTER’ [CENTER’ |CENTER’ |CENTER’ |[CENTER’
2 ==(S.EAST [EAST’ [CW CW CW {user 2)
3 ==||S.WEST |WEST’ |CCW CCW CCW (user 3)
4 ==||N.EAST |SOUTH’ |OPP OPP OPP (user 4)
§ ==(IN.WEST [NORTH’ |CW’ CW’ CW’ {user 5)
6 ==||[EAST |EAST |[CCW’ CCW’ cCwW'’ (user 6) (9.1)
7 ==[|WEST |WEST |OPP’ OPP’ OPP’ (user 7)
8 ==|SOUTH |SOUTH |{user 8) |PHASE HORZ (user 8)
9 ==(INORTH |NORTH [(user 9) |PHASE’ VERT (user 9)

MINOR NEIGHBORHOODS

addr [&/CENTERS|&/PHASES| &/HV | &/USER
10 ==[&CENTER |&PHASE [&HORZ|(user 10)
11 ==|[gCENTER’ |&PHASE’ [&VERT|(user 11)

1There happen to be a more neighborhoods available. One is used for the expanded view
provided by the control-panel’s E] key; two others are components of N/MOORE and N/VOKNN, with
lines 6, 7, 8, and 9 left as user neighbors. All the twelve-bit neighborhoods are listed in the
glossary. A set of extended neighborhoods that make use of the upper four address bits will
be defined in future versions of the software. With sixteen address bits a four-plane margolus
neighborhood is possible by appropriately setting the extended registers on caM-PcC. See the
CAM-PC Hardware Manual for more details.

104 Chapter 9. Resources

Neighbor assignments have both a software and a hardware effect. The soft-
ware effect is to make the appropriate neighbor words available—and mask out the
others, for your protection. The hardware effect, which takes place immediately,
is to wire the appropriate signal sources to the specified table inputs.

If you are perverse you can defeat the software protection—which is based on the
use of vocabularies. For example, the word S.EAST belongs to a small, specialized
vocabulary which is included in the search order only when the N/MOORE assignment
is in effect. You can make a duplicate of this word in the main Forth vocabulary, as
follows

N/MOORE : S.EAST
S.EAST ;

Now, if you say
N/VONN

and try to define a rule in terms of S.EAST (which is meaningful only in the N/MOORE
neighborhood), the software will let you do it without warning.

In certain circumstances it is meaningful to use a rule that uses two different
neighborhoods (one at a time; say, on alternating steps) depending on the value
of a phase bit that is visible in both neighborhoods (Section 9.8). In this case, the
neighbor declarations that have been used (for their software effects) in different
places in the definition of the rule must be issued again in the appropriate sequence
(for their hardware effects) by the run cycle that drives the simulation.

In essence, the software effect of N/MOORE is just to introduce, say, S.EAST
as a mnemonic for “table input no. 2;” this mnemonic can be applied by you indif-
ferently to the table of CAM-A or that of CAM-B—which have identical structure.
On the other hand, the hardware effect of N/MOORE is restricted to the currently
selected cAM half (specified by the command CAM-A or CAM-B); however, the
command CAM-AB —which is the default one—lets subsequent neighborhood as-
signments go to both CAM halves at once (until overridden by CAM-A or CAM-B).
Moreover, if you have more that one CAM card, the neighborhood declaration’s
hardware effect will apply only to the currently selected card (cf. Section 11.2).

Many pairs of neighbor words (such as CENTER and CENTER’, or HORZ and
VERT) are accompanied by a joint version, which is always a two-bit variable.
The least significant bit is the value of the first element of the pair, the next bit
that of the second element (in arithmetic notation, “the first bit plus twice the
second”). Thus, CENTERS=CENTER+2xCENTER’ , and HV=HORZ+2XxVERT .

By default (after NEW-EXPERIMENT) the major neighborhood assignment is
N/USER and the minor one &/USER : the corresponding table address lines are
connected to input pins on the user connector via a TTL buffer. If you are curious,
a floating TTL input (i.e., one that is left unconnected) looks like a 1 —not like

——7 =7

R

3

9.3. Table generation 105

a 0 ; thus, if you forget to make a neighborhood assignment your rule will run as
if all the neighbors are in the 1 state.?

Note that, after you have explicitly made a minor neighborhood assignment,
you cannot make a new one without explicitly making a new major assignment
first (even if this is the same as the previous one). Thus, if during the course of
an experiment you want to change the minor neighborhood from &/CENTERS to
&/PHASES , you cannot say

N/MOORE &/CENTERS
&/PHASES

You have to say
N/MOORE &/CENTERS

N/MOORE &/PHASES

Moreover, a new major assignment also resets the previous minor assignment.
Thus, after

N/MOORE &/CENTERS
N/VONN
the current minor assignment is no longer &/CENTERS but the default &/USER.

9.3 Table generation

CaM Forth encourages you to give a structural description for your cellular-
automaton rules, using an algorithmic language and appropriate mnemonics; this
description is then translated by the software into a lookup table. The best way
to fully understand the magic that turns a CAM Forth rule descriptor in the PC
into a cellular-automaton rule in the CAM card is to have a conceptual picture of
that translation process.

In caM Forth, neighbor names such as NORTH , SOUTH , etc. are used
to describe the new state of a cell as a logical function of neighbors, and thus
specify a cellular-automaton rule. “Column dispatcher” words such as >PLNO
and >AUXO specify which column of the lookup table each part of the result goes
to. MAKE-TABLE is then used to evaluate a rule for all possible neighborhood
configurations, in order to generate new entries for all of the indicated subtables.
For example,

2Except for CENTER and CENTER’ (lines 0 and 1), which are internally connected to the
bit-planes in all neighborhoods—including ¥/USER.

106 Chapter 9. Resources

: TRACE
CENTER CENTER’ OR >PLN1 ;
MAKE-TABLE TRACE

would produce a table-column for plane 1 instructing each bit of this plane to
become a 1 if the bit itself or the corresponding one on plane0isa 1. As a
result, during the course of the simulation plane 1 will contain a “check mark”
for every cell whose bit in plane 0 has ever been on, even if it was subsequently
turned off (assuming we start with a clear plane 1).

MAKE-TABLE goes through all possible neighborhood configurations involv-
ing 12 neighbors. [Future versions of the software will include options for the
remaining 4 bits. At the present time, these are only accessible through low level
routines.] For each configuration, it assigns appropriate values to the neighbor
words, which are really table-compilation variables. It also assigns a default re-
sult for the table entry being constructed: the old entry. Words such as >PLNO
each change one bit of the table entry; then the entry is stored in the table and
the next configuration is considered. Words such as PLNO and AUXO can be used
to read the current value of the corresponding bit of the entry—either the old
value, or the value last assigned with >PLNO , etc. Thus, one can even generate
tables as a function of their previous contents.

9.3.1 Details

The following notes are chiefly meant for the advanced user.

The sixteen bits that collectively make up the lower input to a lookup table
can be read (in binary) as a number ranging from 0 through 65,535 (in decimal).
During table compilation cAM Forth’s internals use a dedicated variable, called
X , to point at a given entry of the table. Another variable, called Y , serves
as a scratchpad for constructing the entry itself; the eight least significant bits
of Y correspond to the eight columns of the lookup tables (the four columns of
CAM-A’s table and the four columns of CAM-B’s).

The command MAKE-TABLE (table descriptor) sets up a loop where X starts
at 0 and runs all the way up to 4095. For each value of X , the scratchpad
Y 1s initialized with the present contents of the X-th table entry; then the table-
descriptor word is executed—and this usually affects some of the bits of Y ; finally,
the new value of Y is'stored back in the X -th entry. During the execution of
the table descriptor, the words responsible for changing some bits of Y are the
“column dispatcher” words >PLNO , >PLN1, >AUXO, etc. (A word such as PLNO
puts on the stack the current value of that bit of Y that would be overwritten by
>PLNO . Thus, one can explicitly use the current contents of the lookup table in
generating its new contents.) It is in this way that MAKE-TABLE TRACE will fill
all of column PLN1, without changing the contents of the other columns.

3

9.3. Table generation 107

Ultimately, a table-descriptor specifies how Y should be changed as a function
of X. The bits of X represent a given neighborhood configuration, and the bits of
Y represent the values that we want the tables to return when that configuration is
encountered during the scanning of the bit-planes. However, instead of explicitly
handling X and Y, we use mnemonic words that refer to particular bits of X
and Y. The words that refer to bits of Y are the column dispatchers, as we have
just seen; the words that refer to bits of X are the neighbor and pseudo-neighbor
words, such as NORTH and PHASE.

In what follows, we’ll suppose that MAKE-TABLE is in the process of generating
entry no. 5 of the tables, for which X has the value (in binary) 000000000101 .
What state of a cell’s neighborhood would yield this combination of bits as an
input to the lookup table—and thus would produce, as a result of the lookup, the
contents of this entry?

If the nine outputs (a 3x3 window) from each plane were permanently wired
as inputs of the lookup table, this question could be answered once and for all.
However, since the overall number of plane outputs is 36 (nine neighbors times
four planes)® and the number of table inputs is only 12, a selection must be made.
As explained in the previous section, the various CAM neighborhoods provide
different selections (by means of hardware multiplexers), and for each selection
the wiring (and thus the meaning) of the 12 input lines changes correspondingly:
some way is needed to automatically keep track of all of this.

Suppose the neighborhood assignment is N/MOORE . A neighbor word such
as S.EAST is made available by the software only in a neighborhood where the
corresponding “south-east” plane output is wired to the table. This word knows
to which of the sixteen available address positions this output is wired: as you
can see from Table 9.1, in N/MOORE the S.EAST neighbor indeed appears as
address line 2. With this information, S.EAST looks at the current value of X,
namely 000000000101, and returns the bit in position 2 of this string (count from
the right, starting from 0)—which we have underlined. In this case, the phrase

S.EAST >PLNO

will extract bit 2 from X and put it in the “plane-0” bit of Y. If you said CCW
instead of S.EAST, you'd get an error message, since the neighbor word CCW is
inaccessible in the N/MOORE context. If you said

LIFE

(where LIFE is as defined in Figure 8.1), bits 0 and 2-9 of X would be added
(by 8SUM), giving 2 as a result; this 2 as an argument to the case statement (also
in Figure 8.1) would cause CENTER to extract bit 0 of X ; the result, namely 1,

3And there are many more signals on the board that one might on occasion want to feed to
the table.

108 Chapter 9. Resources

would be placed by >PLNO in the corresponding bit-position in Y, so that when
Y 1is copied to the table, this 1 would appear in column PLNO of entry 5.

Note that columns PLNO and PLN1 belong to CAM-A, while PLN2 and
PLN3 belong to CAM-B. When we compute a bit as a function of the entry
address X , we obtain a different rule depending on whether this bit is sent to a
table-column belonging to CAM-A or CAM-B; all the rest of the above construction
is independent of whether we are programming CAM-A or CAM-B. In particular,
the neighbor word S.EAST knows that it refers to input 2 of a table, but does not
know whether we have in mind the table for CAM-A or that for CAM-B. Thus, to
make LIFE run on CAM-B it is sufficient to replace the >PLNO in its definition
by >PLN2: the neighbor names do not have to be changed.

Though it is possible to use a single table descriptor for filling all of the table-
columns at once (all eight bits of Y for each value of X), if CAM-A and CAM-B
use different neighborhoods it is usually easier to write separate table descriptors
for the two CAM halves.

9.4 Phases

Besides the contents of the bit-planes and signals provided through the user con-
nector, there are other quantities, called phases, that may be used as lookup-table
inputs (cf. Table 9.1 and [CAM Book 11.1,11.2]). The temporal phases are trans-
mitted to CAM by the software, and remain constant for the duration of a step
(thus the same value is seen by all cells); the spatial phases are generated by
CAM’s address circuitry, but their “phasing” with respect to the origin of the ar-
ray may be controlled by the software. To each phase quantity there corresponds
a pseudo-neighbor used during table generation (see below).

What the user software reads or writes is not directly the hardware bits cor-
responding to the temporal phases or the “phasing” of the spatial phases, but
shadows of these bits in the PC memory, which we shall call pseudo-variables;
lower levels of the software take care of synchronizing the transfer of these data
to CAM at each step.

The following words are used for controlling phase pseudo-variables:

<&PHASE>
<&PHASE’>
<PHASE>
<PHASE’>
<TAB-A>
<TAB-B>

<ORG-H>

.3

3

e
:

9.4. Phases 109

<0RG-V>

To set to 1, say, the bit corresponding to &PHASE you say
1 IS <&PHASE> _

(Since only the least significant bit is used, the strange-looking phrase
37 IS <&PHASE>

would give the same result.) To read whatever value you last gave to this pseudo-
variable (in case you didn’t bother to keep a record) you just say <&PHASE>, and
its value will be pushed on the stack (as the least significant bit of a cell containing
zeros in all other positions). Thus, if you want to complement the value of this
phase you can say

<ZPHASE> NOT IS <&PHASE>

The above pseudo-variables are naturally grouped in pairs, and the two ele-
ments of a pair can be jointly controlled by the following words

<&PHASES>
<PHASES>
<TAB-AB>

<ORG-HV>

which return a two-bit value on the stack and are assigned a two-bit value by
the IS construct. In each case, the least significant bit corresponds to the first
element of the pair. Thus

2 IS <&PHASES>
is equivalent to

0 IS <&PHASE>
1 IS <&PHASE’>

Note that the phase bit corresponding to <TAB-A> (and similarly for <TAB-B>)
never appears as one of the 12 inputs of CAM-A’s lookup table; rather, it decides
whether the regular or the auxiliary tables are to be used for determining a cell’s
new state (Section 9.8).

- One more pseudo-variable with a function somewhat analogous to that of a
phase is controlled by the words SHOW-STATE and SHOW-FUNCTION (see Section
9.7).

During table generation, the pseudo-neighbor words referring to those phase
signals that may appear as lookup-table inputs (cf. Table 9.1) are

&PHASE
&PHASE’

110 Chapter 9. Resources

PHASE
PHASE’

HORZ
VERT

which return one-bit values, and their joint versions

&PHASES
PHASES

HV

which return two-bit values.

9.4.1 Spatial phases

As explained in [CAM Book 11.1], the CAM hardware assigns values of the spatial
phases to each cell of the cell array; namely, HORZ takes on alternating values
:.01010:. on consecutive cells of a row, and VERT alternating values :.01010:. on
consecutive cells on a column. In most situations these values are not explicitly
fed to the lookup table, but affect what is fed to it by controlling which three
of the eight cells that surround a given center cell will be seen as its “Margolus
neighbors” OPP, CW, and CCW (the fourth Margolus neighbor, CENTER , is the
cell itself, and is always available).

By means of <ORG-H> and <ORG-V> the user can only control the “phasing”
of these phases, i.e., the values that they will take on the top-left cell of the
array—and consequently which of the four possible ways of partitioning the array
into 2x2 Margolus blocks is active during a given step.

Explicit use of the pseudoneighbors HORZ and VERT (or their aliases &HORZ ,
&VERT) is necessary only if one wants to use the “absolute” Margolus neighbors
UL, UR, LL, and LR (cf. [CAM Book 12.5] and the Glossary), or if one wants to
make use of horizontal or vertical parities (even or odd rows, even or odd columns)
outside of a Margolus-neighborhhod context.

We mentioned in Section 3.9 that the grid made visible on the CAM screen in
Expanded mode partitions the screen into 2x2 blocks; these blocks coincide with
the current Margolus blocks (as determined by <ORG-H> and <ORG-V>). Since
the values of all PC-controlled variables relevant to the next step (in particular,
the phases) are loaded into CAM immediately after the execution of the previous
step (cf. Section 9.9.2), whenever you stop the simulation the Margolus blocks
that you see on the Expanded mode screen are, in normal circumstances, those
that will be used during the next step. In other words, during rule debugging you
can “preview” (and possibly modify) the Margolus partitioning before using it.

=

"

9.5. Using precompiled tables 111

9.5 Using precompiled tables

The translation of a table descriptor into one or more columns of a lookup table
may take from a fraction of a second to several seconds, depending on the speed
of your PC, the number of table columns involved, and the complexity of the
description algorithm. Once an experiment has been thoroughly debugged, it
may occasionally be convenient to save the tabular version of the rule on a disk
file (default extension: TAB), and load the tables directly from this “memory
dump” whenever the experiment has to be performed. This eliminates annoying
waiting times in canned demos. The following commands are used for this purpose
at the control-panel level

TAB Save tables. Save CAM’s lookup tables to a
specified file (default extension: TAB). The
tables occupy 4096 bytes.

|BACKTAB| | Load tables. Load CAM’s lookup tables from
a specified file (default extension: TAB).

Within an experiment file, the corresponding Forth commands are TAB>FILE
and FILE>TAB (cf. 9.11 and glossary).

Note that the entire contents of the lookup tables (4K nybbles for each caM
half, for a total of 4K bytes) is transfered to or from disk—even if all you are
interested in is a column or two. Note also that only the table is transfered; the
hardware neighborhood and any run cycle must be set up separately.

9.6 The color map

The color map is a small lookup table with four inputs (called ALPHA, ALPHA’ ,
BETA, and BETA’)—which for the moment we shall assume come from bit-planes
0, 1, 2, and 3 (but see below)—and four outputs (called INTEN , RED, GREEN,
and BLUE) which go directly to the the four color-monitor beams (cf. Section
3.2). The color map is written by the command MAKE-CMAP (table descriptor),
where (table descriptor) is a Forth word that describes the table’s contents. For
example, the IRGB map of Section 3.2 is described in an obvious way as follows

: IRGB-MAP
ALPHA >INTEN
ALPHA’ >RED
BETA >GREEN
BETA’ >BLUE ;

The conventions for a color-map descriptor are similar to those used for a cellular-
automaton rule descriptor. For each column (or output line) of the color-map

112 Chapter 9. Resources

table we define a function of the available inputs (ALPHA etc., which play a role
analogous to that of the neighbor words of Section 9.2) and specify (by means of
a “dispatcher” word such as >INTEN) what column of the table this data should
go to. The actual shipping of data to the color-map hardware table is done by
the command

MAKE-CMAP IRGB-MAP

The default—or standard—color map (Section 8.2) performs some logic on the
planes’ contents before displaying it:

: STD-MAP
ALPHA ALPHA’ AND >RED
ALPHA ALPHA’ NOT AND >GREEN
ALPHA NOT ALPHA’ AND >BLUE
BETA BETA’ OR >INTEN ;

That is, a pixel will be red if both the bits in planes 0 and 1 are on; green if only
plane 0 (plane 0 and not plane 1) is on; and blue if only plare 1 is on. Moreover, the
intensity “beam” is turned on if either or both of the bits of planes 2 and 3 are on.

In many experiments the individual bit-planes represent distinct features of
the model under study (e.g., dynamical variables, short-term memory, obstacles,
thermal reservoir, etc.). By attaching a variety of color maps to the control-panel
keys (Section 8.4) one can selectively display those features that are of interest at
any given moment (or mask out irrelevant features, as in the example of Section
9.8). Several examples of color-map programming at this elementary level appear
in the sample experiments.

The usefulness of the CAM color table, especially for real-time analysis of a
simulation, is greatly enhanced by the following two features

o A real-time event counter is attached to the Intensity output of the color
map. Thus, by suitably programming the color map one can select what
events are to be counted.

¢ Instead of just the contents of a cell (i.e., one bit from each plane), one can
feed to the color map the outputs of the auxiliary lookup tables—which in
turn can be programmed, just like the regular lookup tables, to compute
an arbitrary function of a cell’s neighborhood. Thus, even as the regular
lookup tables compute the array’s next state as a function of its current
state, one can display (and, if desired, count) by means of the auxiliary
tables a different function of the current state.

9.7. Displaying an output function 113

9.7 Displaying an output function

The lookup tables used for constructing a cellular automaton’s new state have
“twins”—called auxiliary tables—which see the same neighborhood data as the
regular tables but can be filled with different data (Section 9.1). The auxiliary
tables consist of four “columns,” namely AUX0 and AUX1 for CAM-A and AUX2
and AUX3 for CAM-B, which are filled by dispatcher words (>AUXO etc.) just as
the regular tables.

One use of the auxiliary tables is for display processing, as explained here;
another use for them is as an extension of the regular tables, as explained in
Section 9.8. These two uses are, by and large, mutually exclusive: if you fill the
auxiliary tables with data appropriate for display processing, you can’t expect the
same data to be useful as an extension of the regular tables for updating purposes
(though it is conceivable that one may manage to use some of the auxiliary tables’
columns for one purpose and some for the other).

The command SHOW-FUNCTION [CAM Book 7.7] connects the color map’s
ALPHA input to AUXO rather than to plane 0 (and similarly for the other inputs);
SHOW-STATE restores the default connection to the bit-planes:

SHOW-STATE SHOW-FUNCTION
plane 0—ALPHA AUXO—ALPHA
plane 1—-ALPHA’ AUX1—ALPHA®
plane 2—BETA AUX2—BETA
plane 3—BETA’ AUX3—BETA’

Thus, an extra processing stage (represented by the auxiliary tables) may be
inserted between the bit-planes and the color map. While the color map can only
see one cell at a time when tied directly to the bit-planes, the auxiliary tables
can see a whole neighborhood (within the constraints of CAM’s neighborhoods).4
The cascading of auxiliary tables and color map provides substantial power and
flexibility for display and counting purposes. Good examples are provided by
sections [CAM Book 15.5] and [CAM Book 17.6] of the CAM Book (the source
code for these examples is included in CAM’s software).

9.8 Doublihg up the lookup tables

A phase pseudo-neighbor(cf. 9.4 and [CAM Book 11.1,11.2]) allows one to cut up
the lookup table into two halves, and use one or the other half at any given step
depending on the value that pseudo-neighbor has for the current step (temporal

“Note that in each half caM the auxiliary and the regular tables use the same neighborhood.

=

114 Chapter 9. Resources

phases) or the current cell position (spatial phases). There are times when we

wish to alternate in a similar way between two rules but we need a full-size table

for at least one of the rules. _ -
The command AUX-TABS instructs the planes to take their new values from

the outputs AUXO0 ... AUX3 of the auxiliary tables rather than from the outputs

PLNO ... PLN3 of the regular tables;® the command REG-TABS restores the default ™

situation (new state from the regular tables).

As an example, let us give an explicit rule for Pomeau’s original version of the -
HPP gas[CAM Book 16.5]. The four bit-planes represent particles traveling in four
directions (east, west, south, and north, respectively for planes 0, 1, 2, and 3).
Here a “macro-step” (cf. Section 9.9.2) consists of two “micro-steps:” -

Step 1: Each particle takes one step in the appropriate direction; i.e., all of plane 0
shifts one position eastward, plane 1 westward, etc. =

Step 2: The contents of a cell is examined and possibly modified, without looking
at the neighboring cells: if the cell contains exactly one particle in plane -
0 and one in plane 1, these two particles are transfered to planes 2 and 3
(intuitively, they collide and come out at right angles from the original direc-
tions); the opposite transfer occurs if the cell contains exactly one particle
in plane 2 and one in plane 3.

The experiment file of Figure 9.2 shows a compact way of describing this rule
to CAM. The run cycle HPP-CYCLE takes care of switching between regular and
auxiliary tables on alternating steps.

The SHIFT micro-step needs the N/VONN neighborhood on both halves of the
machine; the COLLIDE micro-step needs &/CENTERS on both halves; since these two
neighborhoods are compatible with each other, we simply program the machine with
both of them. (Had they been incompatible, we would have used separate assignments
for the two micro-step words, and switched neighborhoods as well as tables in the run
cycle.)

In writing this rule, we took advantage of the ambiguity of the neighbor words
with respect to which half of caAM they refer to (cf. Section 9.2). In SHIFT , note
that SOUTH’ and NORTH refer to CAM-B (planes 2 and 3 respectively), since they
are dispatched to AUX2 and AUX3 . A similar game is played in COLLIDE . Take
the collision case (when the IF condition is true), for example; the neighbor words
&ZCENTER and &CENTER’® , which are duplicated by 2DUP , generically refer to “the
other half” of caM, and specifically mean the contents of planes 0 and 1 when they are
dispatched to planes 2 and 3, and vice versa. In COLLIDE , we could have written more
concisely

5See <TAB-A> in the glossary for the separate control of this feature in CAM-A and CAM-B.

1

3

o

£

Ry

f=

9.8. Doubling up the lookup tables

Screen 1

HPP .EXP

115

(100%)

\ Original HPP rule, with a 2-step cycle
NEW-EXPERIMENT N/VONN &/CENTERS

WEST EAST’ NORTH SOUTH’
>AUX3 >AUX2 >AUX1 >AUX0

CENTER CENTER’
RCENTER &CENTER’ = AND IF
&CENTER &CENTER’ ELSE
CENTER CENTER’ THEN

2DUP >PLN3 >PLN2 >PLN1 >PLNO

MAKE-TABLE SHIFT
MAKE-TABLE COLLIDE

AUX-TABS STEP REG-TABS STEP

MAKE-CYCLE HPP-CYCLE

: SHIFT

: COLLIDE

: HPP-CYCLE

04Jan87tmt

Figure 9.2: Source screen for the HPP-gas rule, slow version (two-step cycle).

&CENTERS ELSE

IF

CENTERS THEN
DUP >PLNB >PLNA

When SHIFT is compiled, we will be warned that a word with the same name
already exists. Since we don’t use this old meaning in this experiment, we may ignore

the warning.

If we used the IRGB map for this rule, particles going in different directions
would have different colors. A more appropriate color map would give to each
cell an intensity proportional to the number of particles (0, 1, 2, 3, or 4) present
in it. For this we need five levels, but with the PC’s color monitor only four
intensity levels are possible (black, grey, white, bright white) The following color
map makes do by using blue as an intermediate level between grey and white.

: DENSITY

: LO
: L1
s L2
: L3
: L4

ALPHA ALPHA’ BETA BETA’ + + + +

O >INTEN O >RED O >GREEN O >BLUE
1 >INTEN O >RED O >GREEN O >BLUE ;
O >INTEN O >RED O >GREEN 1 >BLUE ;
O >INTEN 1 >RED 1 >GREEN 1 >BLUE
1 >INTEN 1 >RED 1 >GREEN 1 >BLUE

-
14
3
?
’
.
’

(-- ol1121314)

; \ black

\ gray

\ blue

\ white

\ light white

116 Chapter 9. Resources

: DENSITY-MAP
DENSITY { LO L1 L2 L3 L4 } ;
MAKE-CMAP DENSITY-MAP

Note that in this implementation of the HPP rule each macro-step consists of
two steps. Using the external connector in order to synthesize an ad-hoc neigh-
borhood for this rule, it is possible to run twice as fast: both the shifting and the
colliding are done in a single step, as explained in Section 10.

9.9 The run cycle

Each step of CAM is an activity that takes as an input the current contents of the
bit-planes and returns as an output their new contents. The bit-planes are always
available for this activity; however, any additional input information must be set
up by the software before the step starts, and any additional output information
must be picked up by the software after the step is over. As explained in Chapter
11 of the CAM Book, the chief function of the run cycle is to provide a regular,
automated service for such “input delivery” and “output pick-up.” For example,
in the experiment of Section 8.6 the run cycle contains provisions for reading the
event count after each step; in that of Section 9.8 (see also [CAM Book 11.13] the
run cycle is used to toggle the value of a phase parameter before each step—so
that two distinct dynamics take place in alternation at even and odd steps.

9.9.1 The run cycle as a co-process

A run cycle is a Forth word, say, MY-CYCLE , consisting of “segments” separated
by occurrences of STEP (or IDLE ©), used as an “exit marker” (see below). The
command

MAKE-CYCLE MY-CYCLE

makes this word the current run cycle, and executes the first segment of it (i.e.,
up to the first occurrence of the marker); as soon as the marker word itself is
encountered, the execution of the run cycle is suspended.

Thereafter, at every tick of the cellular-automaton clock (represented by the
command NEXT-STEP), execution of the marker word that had suspended the
cycle is resumed (thus, a step is actually initiated only at this moment) and the
following segment is executed, up to the next exit marker. Execution of the run
cycle continues in this way, driven by the NEXT-STEP clock. If and when the end
of the run-cycle word is reached, execution wraps around to its beginning; the end

®The word IDLE is in all respects identical to STEP, except that it does not update the
bit-planes.

™%

¢

e

=)

)

9.9. The run cycle 117

of the word is not treated as an exit marker. Thus, the run cycle is a co-process,
i.e., a separate process that runs in alternation with the main Forth process (and
has its own program pointer and data stack).

When you again use a MAKE-CYCLE command, either with the same run-cycle
word or a different one, the current run-cycle process is abandoned and a fresh
one is started.

Typically, the user will never explicitly issue a NEXT-STEP instruction, since
this instruction is automatically generated by the control panel—singly by the
[€| command (Step), and repeatedly by the El command (Run). However,
NEXT-STEP may be useful for “tracing” the behavior of a complex experiment—by
single-stepping through it by hand from the Forth interpreter.

Since the run cycle is executed as a co-process, if you have to do some low-level
debugging of its Forth code (e.g., checking what is on the stack after each word is exe-
cuted, perhaps using DEBUG) you should execute the run cycle directly as a foreground
process. If you type the name of a run cycle at the Forth interpreter level, the run cycle
will be executed just as an ordinary Forth word. STEP knows that in this context it
does not have to wait for a NEXT-STEP prompt.

9.9.2 Micro-steps and macro-steps

Usually, one pass through the run cycle will not represent the entire course of
an experiment, but rather a small, self-contained portion of it lasting a few steps
and repeated over and over; in this case the run cycle can be seen as a way of
synthesizing a “macro-step” out of a short sequence of “micro-steps.”

It is often the case that the macro-step should be regarded as an indivisible
sequence of operations (cf. the two-step cycle of the HPP gas, Section 9.8). It
is then useful to have a way to insure that one macro-step has been completed
before analyzing the data produced by it or starting a macro-step of a different
nature. The word NEXT-CYCLE runs without stopping from the current marker
position on through whatever portion of the run cycle is left, wrapping around
the end once and finally stopping exactly where MAKE-CYCLE would have left off,
i.e., at the first exit marker. On the other hand, the word FINISH-CYCLE stops
at the end of the run-cycle word—without wrapping around. Thus, the sequence

: SAGA
MAKE-CYCLE HPP-CYCLE \ attach MY-CYCLE and run initial part
99 O DO NEXT-CYCLE LOOP \ go 99 times through entire MY-CYCLE

FINISH-CYCLE ; \ terminate the cycle

will execute the macro-step defined by HPP-CYCLE a total of 100 times—since
initialization and termination, used in this way, together add up to exactly one
pass through the cycle—without any gap or overlap. Specifically, in the HPP-gas
rule of Section 9.8, the “initialize” part executes

118 Chapter 9. Resources

AUX-TABS
each iteration of the loop executes

STEP REG-TABS STEP
AUX-TABS

and the “terminate” part executes
STEP REG-TABS STEP

The advantage of letting MAKE-CYCLE execute all the preparatory operations
for the first step, stopping just before starting the step (and similarly for each
occurrence of NEXT-CYCLE), is that the state of the whole machine can be
examined exactly as it would be during the execution of the step. If you show
the expanded view (using E) with a grid, the position of the grid will reflect the
spatial-phase origin to be used in the step; the color map will be the one that will
be used during the step, etc.

If the auxiliary tables are filled with a copy of the regular tables and the machine
is left idle after MAKE-CYCLE , the display will show the state of the planes as they are
before taking the first step. Typing SHOW-FUNCTION at this point will show the state of
the planes as they would be if the step were executed (cf. Sections 9.7 and 9.10.1), but
without actually altering the planes; in fact, typing SHOW-STATE will show again the
actual state of the planes. In this way one can have at any moment a non-destructive
preview of the exact action of a step, and compare at leisure the “before” with the
“after”—which may be useful for debugging an experiment.

9.10 The event counter

Since the event counter is permanently connected to the color map’s Intensity
output, the main issue is how to characterize the events to be counted and route
them to this output. This is done by programming the color map and, if desired,
the auxiliary tables—as explained in the previous two sections.

The software machinery for reading the event counter is adequately illustrated,
for most circumstances, by the example of Section 8.6. Should a more sophisti-
cated use of the event-counter pipeline be necessary, refer to the information given
under EVENT-COUNT in the glossary.

Note that a count f 65,536 (256 x256) is just one too many to be contained
in a 16-bit counter. Instead of distinguishing a count of 0 from a count of 65,536
by means of an overflow bit, CAM uses a flip-flop that is set when at least one
event occurred (thus, this flip-flop is set for any count from 1 through 65,536).
This flip-flop has separate service routines that are used by the “stop-on-event”
facility, discussed under EVENT-STOP in the glossary; this flip-flop is also of course
used by EVENT-COUNT when necessary.

o

9.10. The event counter 119

9.10.1 What is counted—and when

By contrasting two trivial situations, the following remarks will help you construct
a mental model of what actually goes on during display and counting.

When the four bit-planes are directly connected to the color map (this is
the default situation, explicitly selected by the command SHOW-STATE), a pixel
appears on the screen at the same time as the corresponding cell is accessed by
the updating machinery, and displays the contents of the cell as of before the
updating. Thus, at the end of an active step the screen will have displayed what
the state of the array was just before that step. If you program the intensity bit to
count the number of 1 s in a plane (as in Section 8.6) and take a single, isolated
step from a given initial configuration, the following will happen:

e During the 1/60-th of a second in which the step is performed, the screen
will show the given configuration and the counter will count the number of
1 s in this configuration—while the updating machinery constructs a new
configuration.

¢ During each of the following 1/60-ths of a second the system will take an idle
step: the display will repeatedly show the newly constructed (now current)
configuration; the counter will remain stopped; and the updating machinery
will stay idle.

If you read the hardware counter at any moment now, its value will refer to what
was counted during the active step—and thus to the initial configuration rather
than to the one now appearing on the screen.

Suppose we are running the PARITY rule{CAM Book 4.2], defined by

CAM-A N/VONN
: SHOOD
CENTER NORTH SOUTH WEST EAST ;
: PARITY
5HOOD XOR XOR XOR XOR >PLNO ;
MAKE-TABLE PARITY

Let us fill column 0 of the auxiliary tables with exactly the same function of the
neighbors, i.e.,

: AUX-PARITY
SHOOD XOR XOR XOR XOR >AUXO ;
MAKE-TABLE AUX-PARITY

so that the new value for the bit of plane 0, (which comes out of PLNO) appears
in duplicate at AUXO (cf. end of Section 9.9.2).

120 Chapter 9. Resources

Now, let’s say SHOW-FUNCTION and run the simulation. The end result is
simply that during each step the color map will see the terminal state of the array
rather than the initial one. Using, for instance, the IRGB map, the event counter
will give us the number of 1 s present in plane 0 at the end of a step—rather
than at the beginning of the step as in Section 8.6.

9.11 Pattern, data, and table files

Pattern files can be created, edited, saved, and loaded from the control panel, as
explained in Chapter 3. They can be automatically recalled and loaded by an
experiment file, as in Section 8.5; see also FILE>PL and FILE>IMAGE in the

glossary.

If several pattern files will be needed in the course of a demo, they should
all be mentioned in OPEN-PATTERN statements, usually at the beginning of the
experiment. If you say, outside of a colon definition,

OPEN-PATTERN FIG1.PAT
OPEN-PATTERN FIG2.PAT

OPEN~PATTERN FIGn.PAT

each file is in turn assigned a file control block, opened, and made the current
pattern file (i.e., the file that operations such as PL>FILE and FILE>PL use
as source or destination). At the end of this sequence, all n files will have been
assigned a control block and will be open (but only the last one will be the “current
pattern file”). '

After this, and at any moment in the course of the experiment, whenever the
Forth word FIG2.PAT is executed (either from the interpreter or inside a colon
definition) the corresponding pattern file is made the current pattern file. There
is no need to close a pattern file, even if new data has been written to it.

The command OPEN-DATA is used in a similar way for making data files
accessible and/or current. The file control block for a data file includes a pointer
that is used for sequential access through the file, and pointer operations (see
DATA-PTR and GET-DATA , and PUT-DATA in the glossary, for details) always refer
to the current data file.

Typical uses for a data file are

e To accumulate selected analysis data produced by a simulation (Section 8.6).

e To provide a sequence of input parameters (e.g., phases) for successive steps
of an experiment.

~—y

Sk Bl Bl

™

e
‘

9.12.

Initialization 121

e To recall data generated by a previous run of an experiment, in order to

compare or correlate them, step by step, with those generated by the current
run.

In a similar way, for the table files (cf. Section 9.5) we have the words
OPEN-TABLE, TAB>FILE and FILE>TAB.

9.12 Initialization

Now that we are familiar with most of the resources of CAM, it will be useful to
know how these resources are affected when the machine is initialized.
The command NEW-EXPERIMENT will

1.

N ok W

10.
11.

12.

Bring the Forth dictionary to its pristine initial state, forgetting any defini-
tions that were subsequently loaded from files or typed at the terminal.

Clear the 4 bit-planes.

Clear the CAM lookup tables.

Load the color-map table with the default color map, STD-MAP.

Reset the display mode to the default one (see LONG? in the glossary).
Select CAM 0 (if more than one CAM card is present).

Set up to apply hardware effect of nelghborhood assignments to both halves
of CAM (i.e., execute CAM-AB).

Select the major neighborhood N/USER and the minor neighborhood
&/USER .

Reset the run cycle to STEP.
Flush and reset the event-counter pipeline.

Turn off control-panel options (grid, magnification, dot mode, cage mode,
etc.). :

Reset default TAB, PAT, and DAT files to be undefined.

On the other hand, the contents of the plane buffers and of the cage are not
affected by NEW-EXPERIMENT , and thus provide a way of passing plane contents
from one experiment to another without going through a disk file.

122

Chapter 9.

Resources

o

s}

Chapter 10

The user connector

Let’s go back to the HPP-gas rule, in the version of Section 9.8; can we compress
the two-step cycle into a single step? Instead of waiting for the particles from the
porth, south, west, and east to move into the 1x1 scope of the center cell in order
to permute them as specified by the collision rule, can’t we catch them when they
are still one cell away, and permute them while we are bringing them in? (After
all CAM has a built-in 3x3 scope of vision.)

Though we only need four neighbors, none of the standard CAM neighbors
provide these particular four, namely,

0. the west bit from plane 0,
1. the east bit from plane 1,
2. the north bit from plane 2,
3. the south bit from plane 3.

In fact, the N/VONN neighborhood on CAM-A makes items 0 and 1 (but not 2
or 3) visible for the updating of planes 0 and 1; while the same neighborhood on
CAM-B makes items 2 and 3 (but not 0 or 1) visible to planes 2 and 3. That is,
two of the neighbors we want are missing from CAM-A, and two from CAM-B.
The neighbors we need are actually present on the user connector; in fact, all
nine neighbors from each of the four planes—for a total of 36—plus a number of
additional signals are present as outputs there. Moreover, the N/VONN major
neighborhood assignment leaves us with two spare address lines (10 and 11) on
each lookup table, which can be programmed by a minor neighborhood assignment
(cf. Section 9.2 and [CAM Book 7.3.2]). What we’ll do is program these spare lines

. as user neighbors (with the &/USER assignment); that is, they will be directly

tied to input pins UA10, UA11l (for cAM-A) and UB10, UB11 (for CAM-B) of the
user connector. We’ll install four wire jumpers to connect to these input pins

123

124 Chapter 10. The user connector

the desired plane outputs, coming out of pins N2, S3, W0, and E1 of the user
connector.
The overall situation is the following:

CAM-A

BIT NEEDED SEEN AS VIA
west of plane 0 | WEST N/VONN
east of plane 1 | EAST’ N/VONN

porth of plane 2 { UA10 (“&NORTH") | &/USER
south of plane 3 | UA1l (“&SOUTH’”) | &/USER
CAM-B
BIT NEEDED SEEN AS VIA
west of plane 0 | UB10 (“&WEST”) &/USER
east of plane 1 | UB11 (“4EAST’”) | &/USER
north of plane 2 | NORTH N/VONN
south of plane 3 | SOUTH N/VONN

We have chosen mnemonic names for the new custom neighbors by analogy with
the rest of the naming scheme; for instance, &SOUTH’ signifies the south bit from
the primed plane (i.e., the odd-numbered one) of the other CAM half, namely CAM-
B—and therefore the south bit of plane 3. These names, to be used in the rule
descriptor, are assigned to the appropriate address lines by the == assignment.
Figure 10.1 shows the entire source code for this experiment.

In that figure, COLL-A and COLL-B represent the conditions under which a collision
(and thus the reshuffling) occurs, as seen respectively from CAM-A and CAM-B. As in
Figure 9.2, we have made life simpler by including in the collision condition the two
cases where there are four particles or no particles, since the reshuffling of identical
particles or of empty cells is harmless.

Of course, in place of HPP-FAST we could have written, perhaps more clearly,
separate rule descriptors for CAM-A and CAM-B.

The signals on the user connector are discussed in cAM’s CAM-PC Hardware
Manual. The connector’s pinout is given in file PINOUT.DOC . All 36 neighbors
from the planes are brought out as outputs on this connector, as well as all table
address lines for both lookup tables as inputs (except lines 0 and 1, which are
permanently connected to CENTER and CENTER’). Thus, by placing a few
jumpers on the connector it is possible to complement or replace the standard
CAM neighborhoods by custom neighborhoods.

It is also possible to completely bypass the built-in lookup tables and replace
them with external ones: the “new state” inputs for all four planes can be made
to come, under software control, from four pins on the user connector.

Other output signals of general interest (cf. CAM-PC Hardware Manual) in-
clude:

125
Screen 1 HPP-FAST.EXP (100%)
\ Fast version of the HPP rule (i-step cycle) 04Jan87tmt
NEW-EXPERIMENT N/VONN &/USER DECIMAL \ to make sure 10, 11
10 == gNORTH 10 = EWEST \ mean the right thing
11 == &SOUTH’ 11 = &EAST’ \ in case you were in HEX
: COLL-A
WEST EAST’ = &NORTH &SOUTH’ = AND ;
: COLL-B
&WEST &EAST’ = NORTH SOUTH’ = AND ;
: HPP-FAST

COLL-A IF
&NORTH &SOUTH’ ELSE
WEST EAST THEN >PLN1 >PLNO
COLL-B IF
&WEST &EAST’ ELSE
NORTH SOUTH’ THEN >PLN3 >PLN2 ;
MAKE-TABLE HPP-FAST

Figure 10.1: Source screen for a fast realization of the HPP gas, using the user connector
to provide the required extra neighbors.

o The spatial phases and the temporal phases.

e Four pseudo-neighbors that take on the value 1 on, respectively, the top
and bottom rows and the leftmost and rightmost columns of the bit-plane
array. These are useful, for example, for generating a “NOW” line for one-
dimensional cellular automata (cf. [CAM Book 9.7]) without wasting one
bit-plane for this purpose; for constructing reflecting boundaries (in place of
the default wraparound) around the bit-planes; for injecting a flow from one
edge and draining it from the opposite edge (“wind tunnel”); and similar
situations where a different dynamics is required on a distinguished line
drawn across the array.

¢ Gating signals, to tell external circuitry when the array is actively updating
and when it is undergoing maintenance tasks (such as horizontal or vertical
retrace). In this way, external counters or event detectors can be prevented
from recognizing spurious events.

It must be noted that any jumpers or other circuitry connected to the user
connector for special applications may be left in place even when not needed,
since it’s up to the software to decide whether or not to look at the user-connector

126 Chapter 10. The user connector

signals: all experiments that do not attempt to use this connector run as if nothing
was connected to it.

If applications requiring different wiring schemes are to be run on the same
CAM, prewired headers (duly labeled and documented) should be used instead of
individual jumpers, to facilitate switch-over. If signals have to travel between CAM
and external custom hardware, one can use ribbon cable terminated by standard
50-pin headers.

Chapter 11

Advanced interconnection
techniques

This chapter introduces techniques for going beyond the standard 256x256 x4,
toroidal wrap-around format—by interconnecting in special ways the bit-planes
of one or more CAM cards.

11.1 Edge gluing

CAM’s normal mode of operation, without any external connections, is as four
planes of 256256 bits. In order to simulate larger systems, provision is made for
gluing the edges of bit-planes together to form larger bit planes. We shall first
describe how gluing is performed on a single CAM card to allow it to simulate two
planes of 512x256 bits or (with some limitations on the neighborhoods that can
be used) one plane of 512x512 bits. Then we shall describe how the bit-planes
of one card may be glued to those of another, for example allowing four cards
to simulate four planes of 512x512 bits (with no limitations, in this case, on the
choice of neighborhood).

Gluing a single CAM card requires hardware and software actions. The hard-
ware action, to be described in more detail below, consists of appropriately cabling
certain glue connectors on the card; the software action consists of issuing com-
mands to turn on the horizontal- and/or vertical-glue bits of the control and con-
figuration register, after the experiment has been initialized by NEW-EXPERIMENT .
Turning on these bits causes CAM to listen to the signals on the glue connectors,
which it would otherwise ignore.

Each cAM card contains two 10-pin horizontal-glue connectors, one for input
and one for output, and a similarly organized set of vertical-glue connectors; you
can use single-wire jumper cables to connect planes 0 to 2 and 1 to 3; or to connect

127

128 Chapter 11. Advanced interconnection techniques

planes 0 to 1 and 2 to 3 (see file PINOUT.DOC for details).

11.1.1 Horizontal glue

To configure CAM horizontally into two planes of 512x256 bits, use four insulated,
single-wire jumpers to connect the individual input-output pairs as follows: hglue-
out0 to hglue-in2, hglue-out2 to hglue-in0, hglue-outl to hglue-in3, and hglue-out3
to hglue-inl. Carefully follow the diagram in the file PINOUT.DOC so that the
outputs are not shorted to ground.

In software, issue the command HGLUE SET-CCR, to turn on the horizontal-
glue bit in the configuration control register. Leave the vertical glue connector
uncabled and the vertical glue bit clear. Planes 0 and 2 will now be joined horizon-
tally, as will planes 1 and 3. In other words, CAM-B is now a horizontal extension
of CAM-A. Therefore, in running an experiment, it is necessary to specify the same
neighborhood and rule table for CAM-B as for CAM-A, which can conveniently be
accomplished by defining the neighborhood and table in CAM-A and then issu-
ing the command B=A . By the same token, the minor neighborhood selection
&/CENTERS should be avoided since it will now refer to the site 256 units away
from CENTER in what is now the same bit plane.

Although CAM is now logically connected as a 512x256 array, the display still
treats the bit planes as before, so that the two halves of the larger array will be
seen superimposed on the screen. For example, using the IRGB color map, the
two halves of glued plane 0-2 will be shown as grey and green superimposed, while
the two halves of glued plane 1-3 will be shown as red and blue superimposed.
If this proves confusing, one can turn off the display of planes 2 and 3 (e.g., by
hitting the color toggle keys and) and one will be left with a display that
shows a 256 x256 window into the 512x256 system. The arrow keys can be used
to shift this window.

11.1.2 Vertical glue

To connect CAM as a single 512x512 system, install the jumpers as described
above on the horizontal glue connector, and install additional wires in an analogous
manner on the vertical glue connectors.

In software, issue the commands HGLUE SET-CCR and VGLUE SET-CCR
to enable gluing both horizontally and vertically. Since all four planes are now
logically connected into one large torus, the neighborhood selection must be one
that makes the same neighbors available on all four bit planes. This means that
N/VONN or any of the Margolus neighborhoods can be used, but N/MOORE cannot.
The transition rule must of course also be the same for all bit planes: plane 1’s
new state must be the same function of the neighbors NORTH’ , SOUTH’ , etc.

11.1. Edge gluing 129

as plane 0’s is of the neighbors NORTH , SOUTH , etc. The following is a typical
example, in which the nonmonotonic majority function SANNEAL [CAM Book
5.4,8.3] is applied to all 4 bit planes.

NEW-EXPERIMENT
HGLUE SET-CCR VGLUE SET-CCR
N/VONN : BANNEAL
++++{0010111};
: RULE
NORTH SOUTH EAST WEST CENTER SANNEAL >PLNO
NORTH’ SOUTH® EAST® WEST’ CENTER’ S5ANNEAL >PLN1 ;

MAKE-TABLE RULE
B=A

For display, toggling off all but one of the colors will provide a 256x256 window
into the 512x512 array, which can again be shifted using the arrow keys.

11.1.3 Gluing cards together

Gluing can also be performed between bit planes of different CAM cards. We de-
scribe how to configure two CAMs to operate as a 512x512 array with two bits per
site and no restriction on the main neighborhood selection. Other configurations
are analogous.

First, each of the two cards is cabled individually as described above for a
512x256 array.

Next these two 512x256 systems are glued together vertically into a single
512x512 system by using two 10-conductor gluing cables to cross-cable between
the boards, each cable running from one board’s vertical-input glue connector to
the vertical-output glue connector on the other board.

Finally, the two cards are connected by a master/slave cable (also available as
an option), installed in two slots of the same PC, and their video connectors are
daisy-chained together. The setup of the slave and monitors is described in the
next section on multiple CAMs. In the software, commands are issued to initialize
both CAMs, turn on vertical and horizontal gluing, and enable the desired monitor
configuration. A typical format is given below.

NEW-EXPERIMENT 2 CAMS
N/MOORE : RULE
an arbitrary rule
depending on Moore neighbors

130 Chapter 11. Advanced interconnection techniques

MAKE-TABLE RULE

B=A
TAB>BUF
: ¢ INIT-ALL
FOR-ALL-CAMS
VGLUE SET-CCR HGLUE SET-CCR
CAM-AB N/MOORE BUF>TAB
NEXT-CAM ;

INIT-ALL

As explained in the next section, the loop FOR-ALL-CAMS ... NEXT-CAM issues
the same information (neighborhood, glue-bits, and rule table) to the two CAMs,
only one of which can be spoken to at a time.

11.2 Multiple CAMs

Up to eight CAM cards can be ganged togetherand operated jointly in a rela-
tively straightforward manner; in this way, one can obtain CAM systems having
substantially greater capabilities. Typical applications of multi-card systems are

e The use of one CAM card to supply good-quality, finely-tuneable random
numbers to another.

e Simulating two-dimensional automata with more than 16 states per site.
e Simulating three-dimensional automata.

e Simulating two-dimensional arrays larger tha.n7256x256 while retaining all
of the features available with a single card (cf. 11.1).

Operating multiple CAMs for any of these reasons is not difficult, but it requires
attention to several kinds of physical connection among the cards and appropriate
commands for communicating with them individually or collectively from the PcC.

The most important physical connection among the cards (aside from the
shared PC bus into which they are all plugged) is a chain of master/slave connec-
tions which serves to distribute a common clock signal (that of the “master” CAM)
to all the other “slave” caxis. In addition, on the slaves, a clock jumper (W1)
must be moved and address switches must be set to map each CAM into a different
region of the PC memory— with the master occupying addresses DF800 to DFFFF
and the slaves (up to eight) occupying consecutively lower 2K byte regions.! The

1

=]

11.2. Multiple CAMs 131

whole 16K byte region (normally DCOOO-DFFFF) of the address space reserved
for the eight CAMs can be remapped by means of programming switches in or-
der to avoid conflicts with other cards. Cf. the CAM-PC Hardware Manual and
CAM-BASE in the glossary. The clock jumber provides a clean signal for reliable
operation.

To set up the connections, the sixteen-pin master-out connector of one CAM
(which becomes CAM 0—the master) is cabled to the slave-in connectors of the
other caAMs. The address switches of each of the slave CAMs must be set to
successively lower addresses to become CAM1, CAM2, etc.

A second kind of connection is generally needed to handle the displays. As
explained in Appendix A, each CAM has a nine-pin video-in connector and a
matching video-out connector, which can be switched under software control be-
tween displaying that CAM’s own video signal or simply passing on a video signal
received from some other CAM (or from the PC color card) via the card’s video-in
connector. If all the CAMs are daisy-chained together, with the video output of
one going to the video input of another, and the output of the last CAM going to
the monitor, then it becomes possible to display any CAM’s video-output at will
under software control.

A third kind of connection will depend very much on the particular application
of the multi-CAM system. This is the connection among the user connectors of
the various CAMs. Since all the CAMs are operating under the same clock, plane-
output lines (e.g., Cl, designating the center cell on plane 1) from one CAM may
be wired to table address inputs (e.g., UA10, designating the tenth user input to
CAM-A’s lookup table) of another CAM, in the same manner as custom neighbor
connections are made on the user connector of a single CAM (see Section 10).
In this way, it becomes possible, using n CAMs, to simulate cellular automata
rules depending on up to 4n bits per site, or, alternatively, to simulate a three-
dimensional array of 256 x256x4n with one bit per site. In addition to individual
connections on the user connector, the depth-glue connectors provide a simple
way to the exchange center bits among multiple CAMs. (Cf.CAM-PC Hardware
Manual.)

A fourth kind of connection has already been discussed: the gluing cables
used to connect bit planes (in the same or different CAMs) into arrays larger than
256 %256 sites. These connections are made only when gluing is desired.

Having made the necessary hardware connections, it becomes necessary
to communicate with the multiple CAMs via software. Immediately after
NEW-EXPERIMENT one should include the command ‘n CAMS’ (e.g., 3 CAMS)
to tell the PC how may CAMs there are. As a rule, communication (specifically,
loading a table or color map, setting bits of registers such as CCR, PCA, and PRA,
operations such as RND>PL on data in the bit planes, and the assignment of
values to pseudo-neighbors such as <ORG-HV> and <PHASES>) takes place with

132 Chapter 11. Advanced interconnection techniques

only one CAM at a time; uder the control of the word CAM-SELECT . For example,
0 CAM-SELECT causes subsequent commands to refer to CAM 0, the master, un-
til a subsequent command such as 2 CAM-SELECT , after which communications
would be directed at CAM 2. The only exceptions to the rule that commands
are directed to one CAM at a time are the commands NEW-EXPERIMENT , which
resets all CAMs, and STEP , which causes all CAMs to step. When uniform data
must be directed at all the CAMs (e.g., giving them all the same rule) the com-
mand in question (such as VGLUE SET-CCR) is put in a loop demarcated by the
words FOR-ALL-CAMS ... NEXT-CAM . An example is given at the end of the
previous section on gluing. Note in particular that neighborhood selections must
be repeated.

If the video-in and -out connectors on the CAMs are properly daisy-chained
together, the command SHOW-CAM can switch the display from one CAM to an-
other. Thus, 0 SHOW-CAM causes the master to be displayed, and 1 SHOW-CAM
displays the first slave. It is possible, though perhaps confusing, to choose one
CAM for communication and another for display. Keyboard commands such as
|I] (Random) then appear to have no effect, but in fact they are operating on a
CAM that is not being displayed. The control-panel @ command alleviates this
problem by performing the functions both of SHOW-CAM and CAM-SELECT ; for
example, typing 1E] causes CAM 1 to be displayed and at the same time selects
that CAM for communications with the PcC.

11.3 Kicking

A particularly useful consequence of the fact that the PC communicates with each
of the several CAMs individually is the ability to rapidly generate high-quality
random numbers on one CAM for use by another CAM. The numbers are generated
by a particle-conserving lattice-gas rule on one CAM (say, the slave) for use by
another (the master). To reduce correlations normally found in the lattice gas
(due to the locality of the rule of motion of the particles), the plane containing
the lattice gas is kicked after every step; this kicking consists of adding a random
offset to the row and column address registers (PRA and PCA) of the slave CAM.
This causes the entire gas configuration to shift by a large random amount (much
as in the “hyperspace” option in the game Asteroids) at each step, in addition
to its normal dynamics, and nearly obliterates the local correlations that would
be exhibited by an unkicked lattice gas used as a source of noise. The enclosed
source file CAMIRAND.4TH , intended to be included in experiments requiring
random numbers, sets up the two-CAM configuration, loads the lattice gas rule
for CAM 1, and redefines the run cycle so as to cause stepping and kicking of the
lattice gas in CAM 1 each time a step is taken by the master CAM 0 . The file

=9

11.3. Kicking 133

also defines pseudo-neighbors RANDO , ..., RAND3 , available in CAM 0 under
the minor neighborhood selection &/USER , and intended to be connected (via
the user connector) to the four bit-planes of CAM 1. The enclosed experiment file
CANIS2.EXP makes use of CAM1RAND.4TH to generate random numbers for a
simulation of the canonical-ensemble Ising model.

Of course, kicking can also be performed on a single CAM. This approach is
illustrated in the accompanying annotated experiment CANIS1.EXP , which is
similar to CANIS2.EXP but uses only one CAM— containing both the lattice gas
and the Ising configuration. The disadvantage of using only one CAM is that—
since the kicking shifts all bit-planes of a CAM card by the same amount—any
information that one wishes not to be kicked (in this case the Ising configuration)
must be swapped out of CAM (into a buffer in the PC) each time a kick is performed.
This slows the simulation several-fold with respect to a one-CAM system without
kicking (which however has significantly distorted behavior due to the correlations
in the “random” numbers) or to a two-CAM system with one CAM dedicated to
the kicked lattice gas.

134

Chapter 11. Advanced interconnection techniques

Part IV

Appendices

135

-—

Appendix A

Configuring the monitor(s)

CAM produces a video signal intended to directly drive a standard PC color
monitor,’ and thus a color graphics adapter card is not needed. However, when
using CAM it is desirable to retain the ordinary text terminal functions of the PcC,
and this can be done by either having a separate monitor for the PC or sharing a
monitor between the PC and the CAM card(s).

A.1 Display multiplexing

The most trivial hook-up entails leaving the PC connected to its own monitor
(either monochrome, through a monochrome card, or color, through a color card),
and adding a separate color monitor for CAM (or for each of the CAMs if you have
more than one), connected to the card’s video-out port.

On the other hand, for economy, portability, or compactness you may want to
use only one monitor for both CAM and the PC. Moreover, if you have more than
one CAM card installed, it may be impractical to use a separate monitor for each
card.

In order to provide maximum flexibility, the CAM card has a video-in as well as
a video-out connector, and is equipped with a two-input /one-output “daisy-chain”
multiplexer, denoted by ‘MPX’ in the following diagram

CAM card
CAM #int extt—video-in
processon MPX |—svideo-out

(video-out is a female 9-pin connector, video-in a male one). Depending on the
setting (‘int’ or ‘ext’) of a software switch, the signal appearing at the video-out

1.e., TTL RGBI, NTSC-compatible scanning format, with 60 Hz vertical sync and 15,750
Hz horizontal sync—such as produced by a CGA card and accepted by any CGA-compatible
monitor, including EGA monitors and most multi-sync monitors.

137

138 Appendix A. Configuring the monitor(s)

port will be either the CAM processor’s internal video signal or a (TTL-buffered)
copy of whatever external signal is coming through the video-in port.

Thus, for the trivial hook-up mentioned above the switch would be perma-
nently set on the ‘int’ position and CAM’s color monitor would be plugged into
the video-out port, while the video-in port would be left disconnected. The PC’s
output would go directly to its own monitor. This mode of operation is selected
by the command 2 DISPLAYS.

On the other hand, if your PC comes equipped with a color card, you can
use a single color monitor and time-share it between CAM and the PC. In this
case, the output of the color card would go to CAM’s video-in port via the routing
cable.? This mode of operation is selected by the command 1 DISPLAYS. In this
mode, pressing the E] key from CAM’s control panel will toggle the display source
between ‘int’ (the CAM signal) and ‘ext’ (the PC signﬁ. Control-panel keys that
request keyboard input, such as [E] and |G| (but not [£]) temporarily switch back
to the PC display for this input.

As distributed, the CAM program defaults to this “1 DISPLAYS” time-shared
mode (cf. Section 2.4), and initially selects the PC as the display source. See below
and Section B.1 for ways to customize the software so as to reflect your actual
monitor hook-up.

Warning: Do not attempt to share a single display with a monochrome card,
unless you have a special, multi-purpose monitor that can indifferently accept color
or monochrome signals. Many color monitors (and in particular the standard 1BM
one) can be permanently damaged when driven by the 18-KHz horizontal sync
provided by the monochrome card.

For similar reasons, do not connect a standard PC monochrome monitor to
CAM’s output (which is equivalent to that of a color card). It won’t work, and
may be permanently damaged.

A.2 Multiple CAMs

If your PC is equipped with two or moreCAM cards® the fully nonmultiplexed
display mode is selected by the command n+1 DISPLAYS , where n is the number
of cards you have (e.g., 5 DISPLAYS {or four cards). The video signals from the
n cards will go directly to the n color monitors, while that from the Pc will go to
the (n+1)-th monitor (color or monochrome).

If you want to use one color monitor for all the CAMs and a separate monitor

2Supplied with caM. This is just a foot or so of 9-conductor cable, with a male header at
one end and a female at the other. Pin 1 goes straight to pin 1, and so on.
3The software must be made aware of this by the command n CAMS; see Section 11.2.

-~

A.2. Multiple CAMs 139

for the PC, daisy-chain the CAMs only and use the 2 DISPLAYS mode. Typing
SEI from the control panel will route to the one color monitor the video signal
from CAM 3 (remember that the numbering of CAM cards starts from 0!); typing
just E] will have no effect. A

If you want to share that one color monitor also with the PC, chain the PC’s
video output to the last CAM’s video-in port and use the 1 DISPLAYS mode.
Typing 3E| from the control panel will route to the monitor the video signal
from CAM 3; subsequently, typing just El will toggle the display between the PC
and caM 3.

A Dbit called CAMOUT in CAM’s CCR register (control and configuration register)
determines whether the external (0) or the internal (1) video signal is fed to the
video-out port. To set this bit for, say, cAM 3 you do

3 CAM-SELECT CAMOUT SET-CCR

and similarly you clear it with CLR-CCR .

These primitives are called by the Forth word DISPLAYS and the control-panel
functions attached to the E] key; they can be used directly for special configuration
needs.

When you are in a fully non-multiplexed mode, the control panel will not change
any CAMOUT bits. Thus, if you want to directly manipulate these bits for several caMs
you should begin by telling the software that you have n+1 displays.

140

Appendix A. Configuring the monitor(s)

_ 3

3

3

3

—3

Appendix B

Customizing the software

A number of features of the CAM Forth system may be personalized according to
your taste, your needs, and your resources. These changes can be made on the fly,
from the Forth interpreter, and forgotten at the end of the session; they can be
retained from session to session, by saving the customized version of the system to
disk; or they or can be given a permanent status in the software by entering them
in the appropriate source files and recompiling the relevant part of the system.

B.1 Personalized features

The following considerations apply indifferently to F83.EXE or CAM.EXE —which
is a superset of the latter; we'll use CAM in the examples.

Fire up CAM.EXE from DOS, as in Section 1.3. You’ll recall that the screen
editor places a stamp with user identification and date on each screen you create
or modify (Section 6.2). To tell CAM who you are, type

I'M xyz
where I’Mis a Forth word that enters xyz (or any other three-letter choice) as
your identifier.

If your PC system has no clock, it is a good idea to include the DOS DATE
and TIME commands in the AUTOEXEC.BAT file (which is executed whenever the
PC is booted) to encourage you to enter the current date.

The default base for numeric conversion (when you type in numbers directly
to the Forth interpreter, or when you want it to print out numbers) is ten. If you
prefer base sixteen, type

* HEX IS SET-BASE

As usual in Forth, you can change to any base at any time, depending on the
current needs; the base you choose with SET-BASE is that which is selected by

141

142 Appendix B. Customizing the software

default whenever you enter the interpreter, and restored when an error occurs,

you hit the key, or load a file (with (1] or) from the control panel.

The default choice is that upper- and lower-case names are distinct (and some
existing Forth words of no concern to you make use of this distinction). If you
wish to be able to type upper- and lower-case interchangeably (which we, however,
discourage), give the command

CAPS ON
and everything you type thereafter will be read as upper-case.

If you are using separate monitors for CAM and the PC, type 2 DISPLAYS to
prevent the software from trying to share the CAM monitor with the PC (Appendix
A).

If you have a Centronix-like—rather than Epson-like—printer (for other print-
ers see Section B.2.4), type

’ CENTRONICS IS INIT-PR

Section B.3 discusses how to change the defaults for where the system expects
the source files to be. Section 6.1 mentions the VARIABLE AUTO-X , whose default
value you may want to change. Similarly for the VARIABLE INSO , which controls
whether you are in insert mode when you enter the screen editor..

If you have made any of these changes, you can save your customized version
of CAM just by typing

SAVE-SYSTEM C:CAM.EXE

or whatever name and drive you choose. Provided you keep a copy of the original
CAM.EXE (or F83.EXE , if that’s what you are customizing), no irreversible
damage can be done if you somehow mangle this process.

For documentation and repeatability, the above operations or any number of
other minor changes or additions can of course be edited first on a screen, and
then loaded into the system (cf. Section B.2.4).

B.2 Recompiling the CAM system

If you want to extend or improve CAM Forth you are provided with all the infor-
mation and the tools to do it.

Starting from Forth’s kernel' you can regenerate the whole CAM system from
scratch—after having made any desired changes in the appropriate source files.
For less extensive changes, you may want to start your regeneration process at a

1This is a minimal, executable Forth system containing just enough resources to be able to
bootstrap itself by compilation of additional Forth screens.

3

B.2. Recompiling the CAM system 143

later stage. On the other hand, if you really want you can start at an even earlier
stage: using the current version of Forth and the provided metacompiler you can
generate a new kernel—one that speaks a somewhat different dialect of Forth, or
perhaps a radically different one.

B.2.1 Generating a new CAM.EXE

If you only want to change something in the CAM portion of the source code (files
of the form CAM-*.4TH) you only need to recompile this part of the system.

With all of the CAM-#.4TH files on the default drive, in the default directory
(here we’ll use C:) start up the F83.EXE program from DOS by typing

C>£f83 cam-load.4th

(of course, you could give a path-name for F83.EXE), and once you are in Forth
type OK.

This loads all of the required files, and (if everything runs without errors)
creates a new version of CAM.EXE . If one of your changes causes an error during
loading, you will be placed in the editor at the point that needs to be corrected;
once you are ready to try again, exit to DOS and begin anew.

B.2.2 Generating a new F83.EXE

If you have made any changes in the files EXTEND86.4TH , CPU8086.4TH ,
UTILITY.4TH or PC.4TH, to regenerate the CAM system you must first generate
a new F83.EXE and then follow the procedure of the preceeding section.

If you already have the program KERNEL.EXE in your files you can generate
F83 directly, otherwise you will have to run a meta-compilation first (see next
section) to generate KERNEL.EXE.

With the four source files mentioned above all on the default drive, in the
default directory (say C:) start KERNEL from DOS with

C>kernel extend86.4th

and once you are in Forth type OK. This loads all extensions and creates a new
version of F83.EXE on the default drive.

Say BYE to Forth, and you're done and back in DOS. Note that if you get
any compilation errors before about the middle of the file PC.4TH there won'’t
yet be a screen editor loaded, and so Forth will only be able to print out the file,
screen number, and line number where the error was detected—you’ll have to exit
to DOS and start up a working F83 or CAM to make corrections.

144 Appendix B. Customizing the software

B.2.3 Generating a new KERNEL.EXE

If you want to change something in the file KERNEL86.4TH (which defines Forth
“in Forth” for the metacompiler), you will have to go through all three stages of
the compilation process in order to get a new working CAM system; this only
takes a few minutes.

Make sure META86.4TH and KERNELS6.4TH are on the default drive (again,
we’ll use C:) and start up either F83 or CAM (the metacompiler can be run
from either of these). Type

C>£f83 metaB86.4th

(or cam meta86.4th if you're starting from CAM.EXE). Once you are in Forth,
type OK and the meta-compilation will begin. When it is done, say BYE to leave
Forth. You now have a new KERNEL.EXE file, and can proceed to produce the
rest of the system.

-

B.2.4 Custom screens

If you are recompiling F83 , you may first want to customize certain default
parameters by editing the appropriate source screens (the most relevant options
are on screen 13 of EXTEND86.4TH), so that the changes will be permanently
incorporated in the software. For example, you might want to define your own
version of NORMAL ,

(MY-NORMAL)
(NORMAL) REVERSE ON ;
* (MY-NORMAL) IS NORMAL

which would have you normally work in reverse video (black characters on a white
background).

To produce pleasing listings with a printer different from the default one
(Epson-like), you should find out how to put your printer in compressed mode. If
your printer is a Centronics, for example, you should comment out the command

? EPSDN IS INIT-PR
on screen 13, and activate the (normally commented-out) command
? CENTRONICS IS INIT-PR

on the same screen (the appropriate CENTRONICS word is already defined in the
system).

If your printer is something else, you will need to define a word to set it up.
Suppose your printer is a Kludge-97 and wants to receive a CONTROL-C character
to put it in compressed mode; then you should say

1

-3

B.3. Installing the system on a hard disk 145

; : KLUDGE-97
CONTROL C EMIT ;
? KLUDGE-97 IS INIT-PR

Even if you don’t want to recompile the system at this moment, you can edit
screen 13 of EXTEND86.4TH , load just this screen by hand (using LOAD), and

type
SAVE-SYSTEM CAM.EXE

This gives you an executable version of CAM in which INIT-PR is vectored to
KLUDGE-97 ; moreover, since the screen already has the desired changes in it, if
you ever recompile the system you won’t have to redo these changes—they’ll be
automatically incorporated.

B.3 Installing the system on a hard disk

If you have a hard disk, it is desirable to transfer to it all of the CAM software (or
at least the files with extension EXE and 4TH).

Make a new directory in the hard disk—CAM is as good a name as any for this
directory—and copy to it all the distribution software:

Cc>Ch \

C>MD CAM

C>CD CAM
C>COPY A:x.x/V

(we assume the hard disk is drive C: and the floppies use A:). The last line
will have to be repeated after inserting each floppy.

To run CAM , boot the computer in the usual way, go to directory CAM in
drive C: , and type CAM.

If you have a hard disk (or large-capacity floppy-disk drive) and have moved
all of the sources to one drive, you should tell the VIEW facility (Section 7.1)
where to find the source files.? Assuming the hard disk is in drive C: , type

DRIVE C: IS-HOME-OF KERNEL86.4TH
DRIVE C: IS-HOME-OF EXTEND86.4TH
DRIVE C: IS-HOME-OF CPU8086.4TH
DRIVE C: IS-HOME-OF UTILITY.4TH
DRIVE C: IS-HOME-OF PC.4TH

for the F83 sources, and similarly for the CAM sources. In general, if you are
keeping the source code on-line but have moved some of the files from the drive

2As supplied, VIEW and FIX will look for the sources on the default drive.

146 Appendix B. Customizing the software

where the system expects it to be to another drive, you’ll have to do something
similar.® However, information about where each source file resides is automati-
cally updated if you re-generate the system (cf. Section B.2).

If you are using DOS version 3.0 (or later), you can put the source files in
a separate directory, and give that directory a drive letter using the SUBST
command.

B.4 Mouse

When using the plane editor, some of the keyboard functions can be complemented
by a mouse used as a pointing device (Section 3.10). For this purpose, CAM
Forth supports a MOUSE SYSTEMS mouse, plugged into serial port 1. No software
installation for the mouse is needed.

The mouse connects to serial port 1 (device COM1), and uses interrupt no. 4.
There are no provisions for setting it up as COM2; on the other hand, the mouse
interrupt number can be changed (should there be an interrupt-number conflict
with other hardware sitting on the PC bus) by writing the desired value in the
VARIABLE MOUSE-IRQ# (see Glossary).

In later versions of the software we may allow a variety of mice by having a
separately installable mouse driver. Check the file READ-ME.DOC for the latest
information.

SEventually, this problem will be solved more satisfactorily with a variant of the DOS PATH
command, which will let you specify the paths to be searched when source code is being sought;
for the moment, directory paths are not supported from within Forth.

Appendix C

The assembler

A complete assembler for the full 8086 instruction set is included in the F83
package. The source code is in the file CPU8086.4TH .

This assembler is written in Forth (the original version is by Michael Perry).
The instructions are organized in different classes, and a defining word is created
for each class. Each Intel mnemonic corresponds to a Forth word which, when in-
terpreted, will assemble machine-language code in the dictionary. If the mnemonic
appears in a COLON definition, it will assemble code every time that definition is
executed. Thus COLON words can act as assembler macros.

Structured conditionals are supported by this assembler. Structures such as
BEGIN ... WHILE ... REPEAT , IF ... ELSE ... THEN , and DO ... LOOP
are provided; they compile appropriate branches which test processor flags. In
our experience, the use of these words simplifies one of the most error-prone
aspects of assembler-language programming. Note that these words belong to the
ASSEMBLER vocabulary (Section 5.3), and are quite distinct from their synonyms
in the main FORTH vocabulary. The latter may still be used during assembly (for
example, in macros that create repetitive portions of assembly code)—but explicit
vocabulary switching is then mandatory.

By recoding into assembly language just a few words that appear in frequently
executed inner loops of a Forth program, execution speed is often dramatically
improved.

C.1 Symbols and syntax

The Forth assembler uses the same mnemonics as the Intel assembler (you can
use a conventional programmer’s reference card for the 8086, such as that printed
by MICRO LOGIC, Hackensack, NJ, for a complete list of mnemonics, opcodes,
operands, and meaning of machine instructions); however, the reverse-Polish no-
tation of Forth suggests a different order for the operands. Namely, the Intel

147

148 Appendix C. The assembler

order
(mnemonic)(destination)(source)

of the instruction MOV BX,AX (move contents of the AX register to the BX register)
becomes, in Forth, AX BX MOV (read “from AX to BX move”), with the syntax

(source){destination) (mnemonic).

The only exception to this rule is the OUT instruction, which takes its arguments
in the same order as the IN instruction.

For reference, a complete synopsis of legal instruction formats for the Forth
assembler is given in Section C.8.

Single-operand instructions do the obvious thing. For example, AX POP
assembles an instruction to pop the top item of the stack into the AX register.
Allowed operands are:

AL CL DL BL AH CH DH BH SP BP
AX CX DX BX ES CS SS DS SI DI

[Bx+SI] [SI+BX] [SI] #
[Bx+DI] ([DI+BX] ([DI] #)
[BP+SI] [SI+BP] [BX] sS#)
[BP+DI] [DI+BP] [BP]

The operands in the first group are complete by themselves, while those in the
second group expect a parameter on the stack, as in the following examples

3 # AX MOV Move the immediate number 3 into the
AX register.
AX 0 [DI] Mov Move the contents of AX into the loca-

tion pointed to by the DI register, with
a displacement of 0 added to the ad-
dress; use the default DS segment.

ES: AX 0 [DI] MOV Same as above, but addressing relative
to the ES segment.

3 # 300 #) MOV Move the immediate number 3 into lo-
cation 0300 relative to the DS register.
300 #) JMP Jump to location 0300 relative to the

CS register.
Note that # signals a number, #) an address, and S#) a segment address.
The only instructions that can use a segment address are JMP and CALL.
Each of the allowed operands leaves a 16-bit word on the stack during assembly
as an argument for the mnemonic, which comes last. This is the operand’s only
effect. For instance, in the last example above, #) leaves a flag on the top of the

3 .1 3

__1

C.2. Exotic jumps, calls, and returns 149

stack which tells the assembler word JMP that the next item on the stack is an
address.

Special Cases

The “shift” mnemonics each assemble a shift by one position unless CL is on
the top of the stack:

AX SHL Shift AX left by 1.
AX CL SHL Shift AX by CL positions.

The “string” mnemonics CMPS , MOVS and SCAS each assemble an operation
on 16-bit words unless preceded by BYTE, in which case they operate on bytes.

The “string” mnemonics STOS and LODS expect either AX or AL on the stack,
to tell them whether to perform a word or byte operation, as in AX LODS , AL
LODS, AX STOS, and AL STOS.

Note that the word BYTE used above, as well as FAR used with the jumps
and calls below, set flags rather than leave anything on the stack.

C.2 Exotic jumps, calls, and returns

The 8086 machine language includes a variety of exotic intersegment hops (sup-
ported by the Intel assembler) that will probably not be used by those writing
coDE words for Forth. However, for completeness the corresponding Forth as-
sembler constructs are described here.

Subroutines have to know whether they are returning to a point within the
same segment or in a different segment. A FAR return expects both a segment

and an offset on the stack, while a normal return expects only an offset (don’t
blame us!).

RET Normal return.
FAR RET Intersegment return.
3 +RET Return and then pop 3 values off of the stack.

2 FAR +RET Intersegment return, and pop 2 values.

The CALL and JMP instructions have normal and FAR forms, and some

150 Appendix C. The assembler

choices about how to get the destination address.

1234 #) CALL Assembles unconditional call to address
1234, with the address stored as a rel-
ative displacement.

1234 S#) CALL Same as above, but the address is
stored as an absolute offset from begin-
ning of segment (useful in relocatable
code, I assume).

AX CALL The address is in AX.
0 [BX] CALL BX points to the address

1234 400 #) FAR CALL Direct intersegment call to segment
400, offset 1234.

1234 S#) FAR CALL The four bytes starting at location 1234
contains the segment/offset for a FAR
call.

0 [BX] FAR CALL BX points to the segment/offset double
word.

Similar considerations apply to JMP (same addressing modes).

C.3 Using machine language routines in Forth

Some the of resources of the 8086 microprocessor are used in running the Forth
virtual machine, and the assembler has been complemented by words that make
reference to these resources convenient.

In particular, Forth uses the SI register for its Instruction Pointer and the BP
register for its Return-stack Pointer; the words IP and RP have been introduced
as synonyms for, respectively SI and BP. These registers (as well as CS, SS, DS, and
the data direction flag) must be maintained across Forth words (i.e., any CODE
word that changes them must restore them before returning control to the inner
interpreter (see below). All other registers (including ES) may be used freely by
Forth CODE words.

We shall discuss later on the mechanism of the Forth inner interpreter, which
constitutes the Forth virtual machine. For the moment, it will be more useful to
give some examples of typical CODE words, taken from the file KERNEL86.4TH .

\ Drop the top element of the stack

CODE DROP (n)
AX POP \ Pop one element off data stack (8086 stack)

3

3 3

e

— 3

3

——

e

T3 T

r ‘—‘g

C.3. Using machine language routines in Forth 151

NEXT \ Return control to the inner interpreter.
END-CODE \ Exit the assembler mode of interpretation

Note that NEXT is a macro. It assembles a jump to a piece of machine code—the
actual inner interpreter—located at an address which we shall symbolically call
>NEXT .

\ Fetch a 16-bit value from addr

CODE @ (addr =-- n)
BX POP
0 [BX] PUSH
NEXT END-CODE

\ Store a 16-bit value at addr

CODE ¢ (n addr)
BX POP
0 [BX] PoOP
NEXT END-CODE

Note that [BX] needs a displacement as an argument, even though we only wanted
a displacement of zero.

\ Duplicate top of stack

CODE DUP (n -- n n)
AX POP
AX PUSH
1PUSH \ Push AX, return to inner interpreter
END-CODE

The macro 1PUSH compiles a jump to location APUSH —which is located just
before >NEXT and contains the instruction AX PUSH.

\ Exchange top two elements of stack

CODE SWAP (n n’ == n’ n)
DX POP
AX POP

2PUSH \ Push DX and AX, return to inn. interpr.
END-CODE

The macro 2PUSH compiles a jump to location DPUSH —which is located just
before APUSH and contains the instruction DX PUSH.

152 Appendix C. The assembler

\ Copy second element from top

CODE OVER (n n’ =- n n’ n)
DX POP
AX POP
AX PUSH
2PUSH
END-CODE

\ Replace top two elements by their sum

CODE + (n n’ =-- n+n’)
BX POP
AX POP
BX AX ADD
iPUSH
END-CODE

\ Replace top 2 elements by their difference

CODE - (n n’ -- n-n’)
BX POP
AX POP
BX AX SUB
1PUSH
END-CODE

Note that BX AX SUB means “subtract BX from AX and leave the result in AX.”
This is a bit awkward, since the order of the arguments in the assembler code is
the inverse of the usual one, but is a consequence of interchanging the order that
Intel uses in their menmonics. Attention should be paid to this notational quirk.

The same problem arises with the compare instruction, CMP . Let’s define two
pieces of code that return on the stack the quantities TRUE and FALSE:

LABEL YES
-1 # AX MOV
iPUSH

LABEL NO
0 # AX MOV
1PUSH

We then define the Forth words < and >:
\ Return TRUE if n<n’

A

-

C.4. The inner interpreter 153

CODE < (n n’ -- flag)
AX POP
BX POP
AX BX CMP
YES JL
NO #) JMP
END-CODE

\ Return TRUE if n>n’

CODE > (n n’ =-- flag)
AX POP
BX POP
AX BX CMP
YES JG
NO #) JMP
END-CODE

After the instruction AX BX CMP in the code for < , the conditional jump YES
JL will occur only if BX is less than AX, which is the opposite of what one might
expect. But by assigning AX to n’ and BX to n we interchanged the order of the
arguments, and the overall test for “less than” works fine.

Note that conditional jumps do not take a usual argument, but just an address
on the stack.

C.4 The inner interpreter

And now we come to the machine code which makes up the inner interpreter. Of
course this code was not produced by the Forth assembler (which wouldn’t be
able to run if the inner interpreter weren’t already in place), but by the meta-
assembler—a tool available to the metacompiler during system generation (see
Section B.2). However, you might want to write your own customized version
of the inner interpreter (for instance, for debugging purposes) and switch to it
when desired. For this reason, in the version that follows we have avoided using
meta-assembler constructs. .

LABEL DPUSH \ Label for jump in 2PUSH macro
DX PUSH
(LABEL APUSH) \ Target location for jump
\ in 1PUSH macro
AX PUSH
(LABEL >NEXT) \ Target location for jump

154 Appendix C. The assembler
\ in >NEXT macro
AX LODS \ These three lines are the inner interpreter
AX W MOV \ A detailed explanation
0 [W]l JMP \ is given below

The word W which appears above is a synonym for BX; in the Forth virtual
machine, this register is used as the Word pointer. The appropriateness of this
appellation will become apparent.

Note that we didn’t insert actual labels to mark locations APUSH and >NEXT,
since we wanted contiguous machine code. We make that up with the following:

DPUSH 1+ CONSTANT APUSH \ to mimic LABEL APUSH
DPUSH 2+ CONSTANT >NEXT \ to mimic LABEL >NEXT

And then we define the macros that we use all the time:

: 2PUSH
DPUSH #) JMP ;

: 1PUSH
APUSH #) JMP ;

: NEXT
>NEXT #) JMP ;

If we replace by brute force the contents of locations >NEXT and following by a
jump to our own custom inner interpreter, we can make a Forth program do all
sorts of strange things! This is in fact how the Forth DEBUG utility works.

The actual code for the inner interpreter is in the three lines following the
comment (LABEL >NEXT) . It begins by picking up a word at the location
pointed to by the Forth IP (instruction pointer) register (i.e., the 8086’s SI
register). .

A Forth cOLON word (i.e., one compiled using :) is essentially a list of
pointers to other Forth words. The IP normally sits pointing to the word in the
list after the one that is currently being executed. By entering >NEXT , we turn
our attention to this next word. Its address is copied into AX by an AX LODS
instruction. This instruction also increments the IP by 2, so that it is left pointing
to the “new” next word in our list.

As a first approximation, Forth replaces a series of machine-language subrou-
tine calls with a list of addresses to branch to, and an inner-interpreter which
gets the next address on the list and branches to it. When this routine is done,
it returns to the inner interpreter. If this were the whole story, we would simply
be saving a little space (the missing CALL instructions) at the expense of a little
time (the overhead in performing the CALL simulation).

What is actually done is only slightly more complicated than this. Instead of
getting the next address and jumping to it, we jump indirectly via it (AX W MOV

C.5. Structured programming 155

0 [W] JMP). What this means is that instead of a list of addresses to be branched
to, we have a list of pointers to Forth words. Each of these Forth words in turn
contains the actual address to branch to in order to execute that word, as well
as some parameter information of interest to the execution routine. For instance,
suppose SCR is a Forth VARIABLE. Then our list might contain a pointer to
SCR ’s first cell (called the code field), which in turn points to the code which is
shared by all VARIABLE’s. This code uses the contents of the W register, which
still points to SCR ’s code field which is being executed, to construct a pointer to
SCR ’s data cell; it is this pointer that is then left on the stack, as the result of
calling SCR. .

In a cCODE word, the code field is followed by executable machine code and
points directly to the first instruction of it.

In a COLON word, the code field is followed by a list of data cells containing
addresses of other words. Many of these words were produced by another COLON
definition, and thus contain in turn list of addresses of other words: the definition
was recursive, and the execution must be recursive as well.! To achieve this
purpose, as soon as activated the COLON interpreter (i.e., the code pointed to by
a COLON word’s code field) parks in the return stack the currently active value of
IP (which was pointing to the next cell in the list being processed by its caller),
loads IP with the address of the first cell of its own list, and jumps to >NEXT
(the inner interpreter). Eventually we will arrive at a CODE word, which we can
execute directly. At the end of each COLON list we will usually find an “end of
list” word, called UNNEST , which will pop the return stack into the IP and make
us climb up one recursion level.

In conclusion, all that the inner interpreter does is “find the next word and
execute it.”

C.5 Structured programming

In conventional assemblers, program-flow control is achieved by means of jumps
or calls to suitably labeled locations. Forth-style assemblers prefer structured
control constructs (such as IF ... ELSE ... THEN). Structuring leads to clearer
code and fewer errors; what is more, structured style lends itself quite naturally
to the incremental, one-pass compilation approach of Forth.

1‘Recursive’ here means that at each level of the calling hierarchy a new copy of the defining
or executing mechanism is created and activated, so that many copies of this mechanism may
be active at the same time—each having progressed a certain way through its task. In the Forth
word RECURSE and RECURSIVE, explained in the Glossary, the term ‘recursive’ is used in a more
limited sense, i.e., it refers to words that call themselves rather than some other word; since
Forth temporarily masks out the name of the word that is undergoing definition, if one want to
refer to just that word one must “unmask” it.

156

Appendix C. The assembler

The control constructs used in the Forth assembler are analogous to those
used in Forth itself. However, the machine-language conditional jumps compiled
by the assembler will, at run time, test the processor status register rather than
the Forth data stack (as is done by Forth IF) or some other registers of the Forth
virtual machine (as is done by Forth LOOP).

For example, the following assembler excerpt

\ Wait for ready flag

PORTC # DX MOV BEGIN
DX AL IN

80 # AL TEST 0<> UNTIL

NEXT

END-CODE

should produce the same code as (in Intel style)

382 CONSTANT PORTC
CODE 70K

MOV DX, #382

START: IN AL,DX
TEST AL,#80
JZ START
JMP >NEXT

where >NEXT is a label.

The following conditions can be tested

< | less U< | unsigned <
> | greater U> | unsigned >
<= | less/equal U<= | unsigned <=
>= | greater/equal U>= | unsigned >=
0= | zero 0OV | overflow
0<> | nonzero NOV | no overflow
0< | negative CARRY | carry set
0>= | nonnegative NCARRY | carry clear
= | synonym for 0= EVENL | low byte is even
<> | synonym for 0<> ODDL | low byte is odd
CXNZ | CX register # zero

(C.1)

(note that EVENL and ODDL sense whether there is an even or odd number of 1s
in the byte, not just whether the byte is evenly divisible by 2).
In a similar way one could have, say,

e
<

C.6. Simple examples . 157

BEGIN ... U< WHILE ... REPEAT
or
OV IF ... ELSE ... THEN

These conditionals can be arbitrarily nested.
The construct

234 DO ... LOOP

can be used to execute some piece of code 234 times—the index is in the CX register,
starting off at 234 and being decremented by 1 each time LOOP is executed. If
the count is already in CX, the construct

HERE ... LOOP

can be used. Since there is only one CX register, it must be pushed on the stack
or otherwise saved in order to perform nested DO loops:

234 DO
CX PUSH
40 DO
LOQP
CX POP

LOOP

C.6 Simple examples

EXAMPLE 1: Count the number of 1 bits in some range of memory locations.

Assume that BIT-COUNT-TABLE is a Forth word that returns the starting
address of a table 256 bytes long, already initialized to contain the number of 1s
in the binary numbers from 0 to 255 (thus, its entries are0112 ... 6 77 8).

The following Forth CODE word makes use of this table to count the number
of 1sin a given area of memory:

CODE COUNT-BITS
CX POP DI POP ES POP (segm offs len -- count)
DX DX XOR AH AH XOR
BIT-COUNT-TABLE # BX MOV
HERE
ES: 0 [DI] AL MOV XLAT
AX DX ADD
DI INC LOOP

158 Appendix C. The assembler

DX PUSH NEXT
END-CODE

We begin by putting the length in CX, which will be decremented by LOOP in
order to keep track of how many times the loop has been executed (LOOP keeps
looping until it decrements CX to zero). We use DI to point to the next byte
to be examined (we initialize it to point to the first byte to be examined). We
allow the section of memory to be examined to lie in any segment, and use the ES
segment register to hold the segment specified. DX will contain our running total
of 1 bits, and is initialized to zero. AH is initialized to zero, and will remain zero
since the XLAT instruction will only affect AL. BX is initialized to point to the
BIT-COUNT-TABLE for the benefit of the XLAT instruction.

The body of the loop consists of four instructions: (a) Pick up the byte pointed
to by ES:DI (note the use of a segment override prefix to make the data access
relative to the ES segment, rather than the default DS segment); (b) Look up the
bit-count using the XLAT instruction (replace AL with the byte from the table
pointed to by BX that corresponds to AL’s original value); (c¢) Add the bit-count
to the running total being kept in DX; and (d) Make DI point to the next byte to
be examined.

When the loop is done, the result contained in DX is pushed onto the stack,
and we return to the inner interpreter.

EXAMPLE 2: Call a BIOS function to send a character to a communications port.

The fact that the machine stack is the same as the Forth parameter stack
makes it very easy to build machine-language words which make BIOS or DOS
functions immediately available as part of Forth.

HEX
CODE COM-EMIT
DX POP AX POP (char port# -- status flag)
1 # AH MOV
14 INT
CWD
AX DX XCHG
2PUSH
END-CODE

Look at the PC Technical Reference manual for details about BIOS functions.
The parameter information for the call is arranged in the appropriate registers,
and then we call the BIOS function by issuing a soft interrupt. After exiting this
function, the high-order bit of AX is set if the routine was unable to transmit the
byte of data over the line; the rest of AH contains the status of the port, and AL
still contains the character.

ST I |

3

.

_3

R

T3 T3

T3

3

C.7. Notes and thoughts on the F83 Assembler 159

The order of the arguments to our word is conventional: source followed by
destination. The CWD instruction converts a 16-bit word in the AX register into
a double word by extending its sign bit throughout DX—thus DX becomes a Forth
logical flag. We exchange AX and DX so that we can use 2PUSH to put the flag
and status information on the stack with the flag on top, which will be the most
useful order for subsequent use. Notice that the low byte of our status word still
contains the byte we were trying to send, while our COM-EMIT word ignores the
high byte of its character argument, so that it’s very easy to use this word in a
loop that retries the operation.

For further examples, look at the source code in the files KERNEL86.4TH ,
CAM-I0.4TH , and CAM-BUF.4TH . The file CAM-INT.4TH contains the source
code for a long interrupt routine (the one that interacts with CAM every 60-th of
a second to control its operation). This source provides a good example of how
to use Forth as a macro assembler.

C.7 Notes and thoughts on the F83 Assembler

1. Some additional constants have been defined to complete the set of condition
codes used as branch conditions in the July 1984 version of F83, namely NOV
(=70), CARRY (=73), NCARRY (=72), EVENL (=7B), ODDL (=7A), and
CXNZ (=E3); moreover, = and <> have been added as synonyms for 0=
and 0<> respectively.

2. Reversing the roles of #) and S#) in FAR CALL’s would lead to a more
regular mnemonic interpretation of #) across the entire instruction set. The
current assignment of meaning to these two words has been acknowledged
as awkward by the authors of F'83, and may be revised in a later version of

F83.
3. We have added a defining word SUBR which makes self-compiling subrou-
tines.
: SUBR
CREATE ASSEMBLER DOES>
#) CALL ;
In this way, after the definition
SUBR GET1
1 AL IN
2 # AL TEST
RET

160

any occurrence of GET1 compiles a subroutine call to the above code when-

Appendix C. The assembler

ever it appears in a CODE word.

4. The meaning of the condition-code words in the ASSEMBLER vocabulary
used in comparisons could be exchanged between elements of a pair such
as > and <, so that one could write the two compared quantities in the
traditional Forth order. For example AX BX CMP < IF (action) THEN would
execute (action) if AX is less than BX. (The meaning of condition codes after
a SUB works fine; the effect of CMPS and SCAS on comparisons changes

correspondingly.)

C.8 Instruction templates

Here we give templates for all legal 8086 Forth assembler instructions.

Pairs of lower-case letters are used to stand for appropriate arguments, ac-
cording to the following table (for example, rx stands for any of the four general-

purpose word registers AX, BX, CX, or DX):

rx — AX BX CX DX (general register, restricted choice)

sr — CS DS ES SS

(segment register)

rr — AX BX CX DX AH AL BH BL CH CL DH DL (general register)
xx — SI DI BP BX BX+SI BX+DI BP+SI BP+DI (index register)
mm — a one-word address

ss — a one-word segment number

dd — a one-word displacement

ii — a one-word value
bb — a one-byte value

As an example, the instruction SS 20 [BX+SI] MOV follows the template

sr dd [xx] MoOvV.

With these conventions, we now list all legal instructions:

AAA

AAD

AAM

AAS

rr rr ADC

rr mm #) ADC
mm #) rr ADC
rr dd [xx] ADC
dd [xx] rr ADC
ii # rr ADC

ASCII adjust for add

ASCII adjust for division
ASCII adjust for multiplication
ASCII adjust for subtraction
Add with carry

C.8. Instruction templates 161

——y

T3

T

o e

ii # mm #) ADC
ii # 44 [xx] ADC
rr rr ADD

rr mm #) ADD

mm #) rr ADD

rr dd [xx] ADD
dd [xx] rr ADD
ii # rT ADD

ii # mm #) ADD
ii # dd [xx] ADD
rr rr AND

rr mm %) AND

mm #) rr ADD

rr dd [xx]) AND
dd [xx] rr ADD
ii # rr AND

ii # mm #) AND
ii # dd4 [xx] AND
mm #) CALL

dd S#) CALL

rx CALL

dd ([xx] CALL

dd [xx] FAR CALL
mm ss #) FAR CALL
mm S#) FAR CALL
CBW

CLC

CLD

CLI

CMC

rr rr CMP

rr mm #) CMP

mm #) rr CMP

rr dd [xx] CMP
dd [xx] rr CMP
ii & rr CMP

ii # mm &) CMP
ii # dd [xx] CMP
BYTE CMPS

CMPS

CWD

DAA

DAS

mm #) DEC

Add

Logical AND (clears carry flag, overflow flag)

Call procedure (pushes return addr)

Convert byte to word (extend sign bit of AL thru AH)
Clear carry flag
Clear direction flag .
Clear interrupt enable flag (turns off interrupts)
Complement carry flag
Compare dest with source (used with conditional jumps
such as JG, and with structured conditionals
such as IF, WHILE, etc.)
Note that the order of arguments is the opposite
of what you might expect from Forth:
after AX BX CMP, a JG (jump if greater-than)
would be executed if BX is greater than AX.

Compare bytes; DS:SI=src, ES:DI=dest,

Compare words; postincrement SI and DI.

Convert word to double word (extend AX sign thru DX)
Decimal adjust for addition

Decimal adjust for subtraction

Decrement by one

162

dd [xx]

IT

SpP

BP

SI

DI

ITr

BYTE mm #)
mm #)

BYTE dd [xx]
dd [xx]

IrXx
rx
Irx
IX
IrX
rx
IX
X
$)
*)
*)
*)
#)
#)
#)
#)
[xx]
[xx]
[xx]
[xx]
[xx]
[xx]
[xx]
[xx]

02 A
AR AR
NN D WNP,LONONDWNRLONOONSdWN O

[
.

T
BYTE mm #)
mm #)

BYTE dd [xx]
dd [xx]

rr

BYTE mm #)
mm #)

DEC
DEC
DEC
DEC
DEC
DEC
DIV
DIV
DIV
DIV
DIV
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
HLT
IDIV
IDIV
IDIV
IDIV
IDIV
IMUL
IMUL
IMUL

Appendix C. The assembler

Divide unsigned: if divisor is a byte operand,
then AL=AX/source, AH=remainder. If word op,
then AX=DX:AX/source, DX=remainder.

Escape for instruction to coprocessor

Halt and wait for interrupt
Signed divide: see DIV

Multiply signed. For byte operand,
AX=ALxsource. For word operand,
DX :AX=AXXsource.

47

C.8. Instruction templates

BYTE dd [xx] IMUL
dd [xx] IMUL
bb AL IN

bb AX IN

DX AL IN

DX AX IN

BYTE mm #) INC
nm #) INC

BYTE 44 [xx] INC
dd [xx] INC

rr INC

SP INC

BP INC

SI INC

DI INC

bb INT

INTO

IRET

dd JA

dd JAE

dd JB

dd JBE

dd JCXZ

dd JE

dd JG

dd JGE

dd JL

dd JLE

mm #) JMP

dd S#) JMP

rr JMP

dd [xx] JMP

dd [xx] FAR JMP
mm ss #) FAR JMP
mm S#) FAR JMP
dd JNE

dd JNO

dd JNS

dd JO

dd JPE

dd JPO

dd JS

LAHF

mm S#) rx LDS

Input from port

Increment by one

Interrupt

Interrupt (4) if overflow

Return from interrupt (restores flags from stk)
Jump if above (unsigned)

Jump if above or equal (unsigned)
Jump if below (unsigned)

Jump if below or equal (unsigned)
Jump if CX register is zero

Jump if equal (zero flag = 1)
Jump if greater (signed)

Jump if greater or equal (signed)
Jump if less (signed)

Jump if less or equal (signed)
Jump unconditionally

Jump if not equal (zero flag = 0)
Jump if no overflow (ovrfiw flag = 0)
Jump if not sign (sign flag = 0)
Jump if overflow (overflow flag = 1)
Jump if parity even (parity flag = 1)
Jump if parity odd (parity flag = 0)
Jump if sign (sign flag = 1)

Load AH from low byte of flags

Load double-word pointer from memory into DS:rx

163

164

mm #) rx LEA
dd [xx] rx LEA
mm S#) rx LES
BYTE LODS
LODS

dd4 LOOP

dd LOOPE

dd LOOPNE

rr rr MOV

rr mm #) MOV
mm #) rr MOV
ii # mm #) MOV
rr dd [xx] MOV
dd [xx] rr MOV
ii # dd [xx] MoV
ii # SP MOV

ii # BP MOV

ii # SI MOV

ii # DI MOV

dd S#) AL MOV
dd S#) AX MOV
AL dd sS#) Mov
AX dd S#) MoV
rr sr MOV

mm #) sr MOV
dd [xx] sr MOV
sT rr MOV

sr mm #) MOV
sr dd [xx] MOV
BYTE MOVS

MOVS

T MUL

BYTE mm #) MUL
mm #) MUL

BYTE dd [xx] MUL
dd [xx] MUL

rr NEG

BYTE mm #) NEG
mm #) NEG

BYTE dd [xx] NEG
dd [xx] NEG
NOP

rr NOT

BYTE mm #) NOT

Appendix C. The assembler

Load effective address

Load double-word pointer from memory into ES:rx
Load string byte at DS:SI into AL (postincr.)

Load string word at DS:SI into AX (postincr.)
Decrement CX by 1 and jump if not zero

Loop while equal (zero flag = 1, CX # 0)

Loop while not equal

Move from source to destination

(byte to AL, address rel to seg start)
(word to AX, address rel to seg start)
(AL, address rel to seg start)
(AX, address rel to seg start)

Move string byte; DS:SI=src, ES:DI=dest
Move string word (postincrement SI and DI)
see IMUL

Negate (subtract from zero)

No operation
Logical NOT (ones’ complement)

s]

C.8. Instruction templates . 165

N mm #) NOT
BYTE dd [xx] NOT
dd [xx] NOT
o rr rr OR Logical oR (clears carry, overflow flags)
{ rr mm #) OR
mm #) rr OR
™ rr dd ([xx] OR
I dd [xx] rr OR
ii # rr OR
o ii # mm #) OR
f ii # dd4 [xx] OR
bb AL OUT Output to port
e bb AX OUT
! DX AL OUT
DX AX 0UT
e mm #) POP Pop word from stack (postincrement SP)
(dd [xx] POP
rr POP
o sr POP
SP POP
BP POP
P SI POP
| DI POP
POPF Pop flags from stack
= mm #) PUSH Push word onto stack (predecrement SP)
{ dd [xx] PUSH
rr PUSH
= sr PUSH
SP PUSH
BP PUSH
o SI PUSH
! DI PUSH
PUSHF Push flags onto stack
o rr RCL Rotate thru carry left by one position
’! mm #) RCL
dd [xx] RCL
™ rr CL RCL Rotate thru carry left by CL positions
; mm #) CL RCL
dd [xx] CL RCL
. rr RCR Rotate thru carry right by one position
! mm ') RCR
dd [xx] RCR
o rr CL RCR Rotate thru carry right by CL positions
mm #) CL RCR

i

166

dd [xx] CL RCR
RET

FAR RET

ii +RET

ii FAR +RET
rr ROL

mm #) ROL

dd [xx] ROL

rr CL ROL

mm #) CL ROL
dd [xx] CL ROL
rr ROR

mm #) ROR

dd [xx] ROR
rr CL ROR

mm #) CL ROR
dd [xx] CL ROR
SAHF

T SAL

mm #) SAL

dd [xx] SAL

rr CL SAL

mm #) CL SAL
dd [xx] CL SAL
rr SAR

mm #) SAR

dd [xx] SAR

rr CL SAR

mm #) CL SAR
dd [xx] CL SAR
rr rr SBB

rr mm #) SBB
rr dd [xx] SBB
mm #) rr SBB
dd [xx] rr SBB
ii # rr SBB

ii # mm #) SBB
ii # dad [xx] SBB
BYTE SCAS

SCAS

rr SHL

mm #) SHL

dd [xx] SHL

rr CL SHL

Appendix C. The assembler

Return from proceedure

Return from FAR proceedure
Return and pop ii items off stack
Return FAR and pop items
Rotate left by 1 position

Rotate left by CL positions

Rotate right by 1 position

Rotate right by CL positions

Store AH into low byte of flags
Shift arithmetic left by one (zero fill)

Shift arithmetic left by CL (zero fill)

Shift arithmetic right by one (sign fill)

Shift arithmetic right by CL (sign fill)

(destination minus source)

Scan string byte: CMPs ES:DI with AL (dest)

Scan string word. AX acts as CMP dest.
Same as SAL

——
|

ey

Al

g

C.8. Instruction templates

mm #) CL
dd [xx] CL

T

mm #)

dd [xx]
rr CL SHR

mm #) CL SHR
dd [xx] CL SHR

SHL
SHL
SHR
SHR
SHR

STC
STD
STI

BYTE STOS

STOS

rr rr SUB

rr mm #)

mm #) rr SUB

rr dd [xx]
dd [xx] rr SUB
ii # rr SUB

ii # mm #)
ii # dd [xx]

IT
mm ¥)
dd [xx]
ii #

ii # mm

Ir
rr
Ir
Ir
#)

ii # dd [xx]

T
mm #)
dd [xx]
SP

BP

sI

DI

T
IT
IT
AX
AX
AX
AX

SUB

SuB

SUB

SuB
TEST
TEST
TEST
TEST
TEST
TEST
WAIT
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XLAT

rr rr XO0R

rr mm #)

mm #) rr

rr dd [xx]
dd [xx] zr
ii # rr

ii # mm #)
ii # dd [xx]

X0R
XOR
XOR
X0R
X0R
X0R
X0R

Shift logical right one position (zero fill)

Shift logical right CL positions (zero fill)

Set carry flag

‘Set direction flag (string ops will decr)

Set interrup enable flag (allow interrupts)
Store AL in string byte at ES:DI (postincr.)
Store AX in string word at ES:DI (postincr.)
(destination minus source)

(affects only flags)

CPU enters WAIT state .
Exchange contents of dest and source

Translate: AL+BX points to new value for AL
Logical xor

167

168 Appendix C. The assembler

C.8.1 Prefixes

Prefixes are instructions that modify the action of the following instruction. They
comprise the lock prefix,

LoCK Lock bus during execution of next instruction
the repeat prefixes, and the segment-overrride prefixes.

The repeat prefixes are used with LODS, MOVS, STOS, CMPS, and SCAS. After
each repetition, the CX register is decremented: execution continues until either
CX reaches zero, or the repeat test (equal or not equal) fails. Source and destination
pointers (SI and DI) end up pointing one position past the end of string(s), or
else one position past the first point of match/mismatch.

REP Repeat next instruction
REPZ Repeat while zero flag on (equal)
REPNZ Repeat while zero flag off (unequal)

The segment-override prefixes are used to override the 8086 default assump-
tions concerning which segment register to use with the next instruction. The
normal default is the DS segment, and this can always be overridden. Memory
references using the BP pointer take the stack segment (SS) as their default, but
this can also be overridden. The only defaults which can’t be overridden are:
string destinations (ES), stack operations (SS), and instruction fetches (CS).

Cs: Use code segment register with next instruction
DS: Use data segment register with next instruction
ES: Use extra segment register with next instruction
SSs: Use stack segment register with next instruction

C.9 Interface with DEBUG

One of the programs which is supplied as part of DOS is an 8088/86 assembly
language programming aid called DEBUG (this should not be confused with the
word-debugging utility of F83—also called DEBUG). This program provides fa-
cilities for tracing and disassembling machine language programs, which may be
used in conjunction with Forth if you are having difficulty getting a machine lan-
guage routine to work within F83 or CAM. The DEBUG program is extensively
documented in the DOS manual, but we will provide here a brief illustration of
how to use it with Forth.

To invoke DEBUG for use with a version of the Forth system, say, CAM.EXE ,
you would simply type from DOS

C>debug cam.exe

3

iy

C.9. Interface with DEBUG 169

You will find yourself at the DEBUG command level, with a - (“dash”) as a
prompt. (In the following examples, this dash has been indicated for clarity, but
should not be typed by you.)

The most useful commands will be 6 (Go), D (Dump), R (show/modify
Registers), T (Trace), and U (Unassemble).

To begin executing the Forth program, simply type

-G

This will cause execution to begin at location 0100 (hex) within the segment
containing the CAM.EXE program, which is the normal point where a EXE file
begins execution. Execution will proceed normally (with about 20K of the PC’s
RAM taken up by DEBUG) until you type G at the Forth level (or execute G as
part of another Forth word). At this point you will find yourself back in DEBUG .

C.9.1 Unassembling code

To unassemble code starting at location 0567 (hex) type
-U 567

This will unassemble a screenful of code; to continue to unassemble following lines,
just type

-U
for another screenful.
To dump values from memory starting at location 07A2, type
-D 742
You can return to Forth by typing
-G

This will cause you to continue where you left off. Thus, you can unassemble code
with DEBUG almost as if this were a Forth utility.

C.9.2 Tracing .

If you want to trace program execution, you should set a breakpoint while in
DEBUG . If you want to start tracing at location 7ASC, restart Forth using

-G TASC

When the execution of Forth reaches this location you will exit to DEBUG . The
status of all registers and the next instruction to be executed will be displayed.
All the DEBUG commands are available; in particular, typing

-T

170 Appendix C. The assembler

will cause the next instruction to be executed in trace mode. This means that we
will return to DEBUG after the instruction has been completed, and the status
of all registers and the instruction to be executed next will be shown. You can
single-step through the execution with more T ’s, or you can type, say,

-T 20
to trace 20 (hex) instructions. At any time you can continue with Forth, by typing

-G
or continue executing until another breakpoint occurs (at location 82D7, say) by
typing

-G 82D7

You can end a trace by cold-starting Forth with

-G =100
(execution resumes at location 0100) or with

-G =100 7AD3

(cold-start, and leave a breakpoint at 7AD3).

Before cold-starting Forth, the code-segment register must have the correct
value. If you are tracing a DOS interrupt or some other routine located outside
of Forth, you should restore the CS register using the R command to its normal
value. The command would be

-R CS

The program will respond with its current value, and give you an opportunity to
enter a new value, e.g.

CsS 917

You can respond after the : prompt with a new value, or press RETURN to leave
the register unchanged.

C.9.3 Leaving DEBUG

Forth normally takes over interrupt vectors that it uses, saving their initial values
during cold-start, and restoring them when you execute BYE . Thus you should
normally exit debug by typing BYE from Forth and then Q (Quit) from DEBUG .

If you have cold-started Forth from DEBUG more than once since the beginning
of the session, incorrect information may be saved about the original values of
these vectors. In this case you should exit by rebooting the PC.

Appendix D

Software interface with CAM

The CAM software, as currently realized, consists of eight source files that are
loaded on top of the Forth system; the latter is a modified version of F83 (see
Introduction and Section 4.7).

The CAM part of the system serves not only as a shared language for use by
the CAM community, but also—for those who might want to implement their own
CAM driving software in some other language—as an example of how to make
CAM perform various functions.

Details concerning data formats used by this software (which should be useful
to those wishing to write programs (in Forth or other languages) to perform data
analysis, pattern generation, etc.) are provided in the next section. In this section,
we provide a brief overview of the structure and organization of the CAM-specific
part of the software.

The lowest level of the software is contained in the file CAM-INT.4TH. This
contains the interrupt driver for CAM that normally gets control during every
CAM vertical blanking interval; interrupts that invoke this driver are generated
by the master CAM (CAM number 0) every sixtieth of a second. The principal
function of this routine is to maintain the shadow registers that constitute the
primary real-time interface between application programs and the CAM hardware.
For each installed CAM, the interrupt driver copies control-register data and color-
map data to the machine, and retrieves any accumulated counts from the event
counters before scheduling a new step (if one is pending). Since the high-level
word STEP waits for this copying to occur before proceeding, any settings of
neighborhoods, color maps, phase bits, etc. that are made before STEP is executed
will have actually been sent to CAM before the application can try to change them
further. The actual interlock between the interrupt routines and the mainline
routines is handled by the intermediate level word PEND , which sets a flag that is
cleared by the interrupt routine when the copying has actually taken place, and
the word WAIT-FOR-PEND , which waits for this flag to be cleared. The interrupt

171

172 Appendix D. Software interface with CAM

routine can also read or write a limited amount of plane data during the vertical
blanking time (see R/FLY and W/FLY in the glossary); it is this facility that is
used to draw the dot and cage cursors used by the control-panel program. The file
CAM-INT.4TH contains shadow screens and is carefully annotated; it provides an
example of how well suited Forth is to being used as a macro-assembler language.

The rest of the CAM source files are documented principally by the glos-
sary, some sections of this manual, and the CAM Book. After the interrupt
level routines are loaded, the next-lowest level of routines (contained in the file
CAM-I0.4TH) is added. These input/output routines are used to interface with
the shadow variables that are maintained by the interrupt, and also to do plane
and table I/O, which involves inhibiting the interrupt routine and taking direct
control over CAM hardware registers. The software is designed to handle up to
eight CAMs simultaneously; at the interrupt level all CAMs are always treated on
an equal footing, except that step-requests are sent only to the master CAM. At
the I/O level, we adopt the strategy of only communicating with one machine
at a time (see CAM-SELECT), avoiding the need to have all I/O routines take a
CAM number as an argument. The interlock words PEND and WAIT-FOR-PEND are
defined in this file.

The next level of the software, contained in the file CAM-BUF.4TH , defines
words for performing memory management outside of the 64K segment containing
the Forth system: allocating and de-allocating buffers. Most of the extra buffer
areas used by the remainder of the routines are defined here, as well as operations
on and between buffers addressed by segment and offset (including random number
generation) and operations between buffers and planes or tables.

At the next level (CAM-HOOD.4TH) we worry about table generation. We
define the word == , and use it to define all of the compilation variables used
in table generation; we define >> and use it to define all of the words used to
modify table entries during table generation; we define all of the major and minor
neighborhood selectors; and we define MAKE-TABLE . Similarly, we define the
words used in color-map generation.

With this background, we are ready to worry about making CAM run steps
(CAM-STEP.4TH). We define a stepping coroutine called NEXT-STEP , and the
words STEP and IDLE, which cause a coroutine exit to the main program when
used within the Forth word attached to this coroutine. NEXT-STEP resumes the
coroutine where you last left off, beginning by causing the active step (or idle step)
where you exited to actually start. MAKE-CYCLE is used for attaching a Forth word
to the stepping coroutine. In this file, we also make provision for service steps
(see BEGIN-SERVICE-STEPS) such as shifts of bit-planes, which can be interposed
between two steps of an experiment: CAM stepping control and status information
(as well as tables and color maps) is restored (by END-SERVICE-STEPS) when
done. Provision for showing an expanded version of the central portion of the

-

3

173

screen using CAM itself as the display device while running is also made here.

The penultimate file is CAM-EDIT.4TH . It contains all of the routines used for
the limited graphic editing facilities provided. Cursors are drawn by using the fa-
cility for reading and writing plane data during the vertical blanking time without
turning off CAM’s display (as is required by the normal plane I/O routines). This
file also contains an interrupt driver for a MOUSE SYSTEMS serial mouse, which
can be used instead of the arrow keys in the control panel program to move the
dot-editing cursor.

Finally, the file CAM-KEYS.4TH defines a key-interpreter loop that consti-
tutes the control-panel program. When a key is pressed, a set of vocabularies
(GENERAL , PLANE-OPS , etc.) is searched for that key name. If it appears
as a Forth word in one of these vocabularies, then this word is executed. Key
names are put in these vocabularies by the word ALIAS , which makes the key
name be essentially a synonym for another Forth word. When the key name is
executed, the name of the associated Forth word is printed, and then this word
is executed. For each of the ALIAS vocabularies, a listing of key names and the
names of associated Forth words is made available as a sort of menu. The order
of items in these menus reflects the order in which the keys were added to the
dictionary. User defined ALIASes are put in the ALTERNATE vocabulary, and (to
avoid confusion with system-defined keys) are always attached to Alt- keys.

All of these files are loaded by the master file CAM-LOAD.4TH , which also
defines how CAM is initialized when it first starts up, and what clean-up activities
are done when you end the CAM program.

174

Appendix D. Software interface with CAM

Appendix E

Data formats

There are three main kinds of files supported directly by this software for storing
and retrieving information relevant to CAM experiments. If you wish to manip-
ulate these files from other languages (for example, to perform data analysis or
pattern generation using a more familiar or appropriate language than Forth) this
information on data formats should be helpful.

E.1 Plane pattern files

Plane pattern files have a default extension of PAT , and are always a multiple
of 8K bytes. These files contain no header information: the number of bit-planes
that are stored as a pattern (1, 2, 3, or 4) is determined entirely by the file size
(8192, 16384, 24576, or 32768 bytes).

All data corresponding to a single bit-plane is stored contiguously: the first
byte of each 8K record corresponds to the eight bits on the left end of the top
row of CAM’s screen. Subsequent bytes within this record are mapped in a left-
to-right, top-to-bottom order (the first 32 bytes correspond to the top row, the
next 32 to the next row, etc.). Note that within each byte, the least significant
bit of the byte appears as the leftmost on the screen, with the more significant
bits appearing at consecutive locations to its right. This may be the opposite of
what you expect from ordinary arithmetic notation.

See IMAGE>FILE in the glossary for a discussion of how 8K records are mapped
onto planes.

E.2 Table files

The lookup tables used by CAM may be saved to or restored from disk (see
FILE>TAB and TAB>FILE in the glossary). The default extension for table

175

176 Appendix E. Data formats

files is TAB. Each lookup table is exactly 4096 bytes long and contains only table
data: no header data is included. Neighborhood and run-cycle information must
be provided separately. Each byte in a table file (default extension is .TAB)
contains information for 8 subtables (columns). Bit positions 0, 2, 4, and 6 refer
to the regular tables for planes 0, 1, 2, and 3 respectively; positions 1, 3, 5, and
7 refer to the auxiliary tables for planes 0, 1, 2, and 3 respectively. Each entry
(byte) corresponds to a particular set of input values (see Table 9.1). For example,
entry 000 refers to the case when all neighbors return zeros; entry FFF (hex)
refers to the case when all neighbors return ones.

E.3 Data files

The default extension for data files is DAT . 16-bit values stored in or retrieved
from such files using PUT-DATA and GET-DATA appear in consecutive locations,
each value consisting of two bytes (the low-order byte is stored in a position
closer to the beginning of the file than the high-order byte). Data files in this
implementation are always padded to be a multiple of 1K (1024) bytes in length—
you may want to start your file with a count of data items if this is a variable
quantity.

"3

S~

Appendix F
Forth-83 Standard

We insert here some verbatim excerpts from the Forth-83 Standard, retaining the
numbering of the original sections. The material we include is intended to help
make clear what parts of this system are standard Forth, and what parts are
extensions.

Forth standardization efforts began in the mid-1970’s by the European Forth
Users Group (EFUG); this effort resulted in the Forth-77 Standard. As the lan-
guage continued to evolve, an interim Forth-78 Standard was published by the
Forth Standards Team. The Forth-79 Standard was published in 1980, and the
Forth-83 Standard in 1983.

COPYRIGHT (©) 1983 FORTH STANDARDS TEAM

Permission is hereby granted to reproduce this document in
vhole or in part provided that such reproductions refer to
the fact that the copied material is subject to copyright by
the FORTH Standards Team. No changes or modifications may
be made to the copied material unless it is clearly
indicated that such changes were not incorporated in the
original copyrighted work.

The existence of a FORTH Standard does not in any respect
preclude anyone, whether the individual has approved this
Standard or not, from implementing, marketing, purchasing or
using products, processes, or procedures not conforming to
the Standard. FORTH Standards are subject to periodic review
and users are cautioned to obtain the latest editions.

FORTH STANDARDS TEAM
P.0. BOX 4545
MOUNTAIN VIEW, CA 94040
UsA

ISBN 0-914699-03-2

177

178 Appendix F. Forth-83 Standard

F.5 Definition of Terms

These are the definitions of the terms used within this Standard.

address, byte
An unsigned 16-bit number that locates an 8-bit byte in a standard FORTH
address space over the range {0..65,535}. It may be a native machine
address or a representation on a virtual machine, locating the addr-th
byte within the virtual byte address space. Addresses are treated as
unsigned numbers. See: "arithmetic, two’s complement*

address, compilation
The numerical value compiled for a FORTH word definition which identifies
that definition. The address interpreter uses this value to locate the
machine code corresponding to each definition.

address, native machine
The natural address representation of the host computer.

address, parameter field
The address of the first byte of memory associated with a word definition
for the storage of compilation addresses (in a colon definition), numeric
data, text characters, etc.

arithmetic, two’s complement
Arithmetic is performed using two’s complement integers within a field of
either 16 or 32 bits as indicated by the operation. Addition and
subtraction of two’s complement integers ignore any overflow conditionm.
This allows numbers treated as unsigned to produce the same results as if
the numbers had been treated as signed.)

block
The 1024 bytes of data from mass storage which are referenced by block
numbers in the range {0..the number of blocks available -1}. The actual
amount of data transferred and the translation from block number to
device and physical record is a function of the implementation.
See: "block buffer" "mass storage"

block buffer
A 1024-byte memory area where a block is made temporarily available for
use. Block buffers arec uniquely assigned to blocks. See: "9.7
Multiprogramming Impact"

byte
An assembly of 8 bits. In reference to memory, it is the storage
capacity for 8 bits.

character

.3

R B

3

F.5. Definition of Terms 179

A 7-bit number the signification of which is given by the ASCII standard.
When contained in a larger field, the higher order bits are zero.
See: "6. REFERENCES"

compilation
The action of converting text words from the input stream into an
internal form suitable for later execution. When in the compile state,
the compilation addresses of FORTH words are compiled into the dictionary
for later execution by the address interpreter. HNumbers are compiled to
be placed on the data stack when later executed. Numbers are accepted
from the input stream unsigned or negatively signed and converted using
the value of BASE. See: "number" "number conversion" "interpreter,
text"

defining word
A wvord that, when executed, creates a new dictionary entry in the
compilation vocabulary. The new word name is taken from the input
stream. If the input stream is exhausted before the new name is
available, an error condition exists. Examples of defining words
are: : CONSTART CREATE

definition
Sea: "word definition"

dictionary
A structure of word definitions in computer memory which is extensible
and grows toward higher memory addresses. Entries are organized in
vocabularies to aid location by name. See: "search order"

display
The process of sending one or more characters to the current output
device. These characters are typically displayed or printed on a
terminal. The selection of the current output device is system
dependent.

division, floored
Integer division in which the remainder carries the sign of the divisor
or is zero, and the quotient is rounded to its arithmetic floor. Note
that, except for error conditions, nl n2 SWAP OVER /MOD ROT * + is
identical to n1. See: "floor, arithmetic”

Examples:
dividend divisor remainder quotient
10 7 3 1
-10 7 4 -2
10 -7 -4 -2
=10 -7 -3 i

equivalent execution
A standard program will produce the same results, exclusive of timing
dependencies, when given the same inputs on any Standard System which has

180 Appendix F. Forth-83 Standard

sufficient resources to execute the program. Only standard source
programs are transportable.

error condition
An exceptional condition which requires action by the system which may be
other than the expected function. Refer to the section "10. Error
Conditions".

false
A zero number represents the false state of a flag.

flag
A number that may have one of two logical states, false or true.
See: "falsge" "true"

floor, arithmetic
If z is any real number, then the floor of z is the greatest integer less
than or equal to z.
The floor of +.6 is O
The floor of -.4 is -1

free field format
Bumbers are converted using the value of BASE and then displayed with no
leading zeros. A trailing space is displayed. The number of characters
displayed is the minimum number of characters, at least one, to uniquely
represent the number. See “number conversion"

glossary
A get of explanations in natural language to describe the corresponding
computer execution of word definitioms.

immediate word .
A wvord which executes when encountered during compilation or
interpretation. Immediate words handle special cases during compilation.
See, for example, IF LITERAL ." etc.

input stream
A sequence of characters available to the system, for processing by the
text interpreter. The input stream conventionally may be taken from the
current input device (via the text input buffer) and mass storage (via a
block buffer). BLK , >IN , TIB and #TIB specify the input stream. Words
uging or altering BLK , >IN , TIB and #TIB are responsible for
maintaining and restoring control of the input stream.

The input stream extends from the offset value of >IN to the size of the
input stream. If BLK is zero the input stream is contained within the
area addressed by TIB and is #TIB bytes long. If BLK is non-zero the
input stream is contained within the block buffer specified by BLK and is
1024 bytes long. See: "11.8 Input Text"

=y

- ——

F.5. Definition of Terms 181

interpreter, address
The machine coede instructions, routine or other facilities that execute
compiled word definitions containing compilation addresses.

interpreter, text
The word definition(s) that repeatedly accepts a word name from the input
stream, locates the corresponding compilation address and starts the
address interpreter to execute it. Text from the input stream
interpreted as a number leaves the corresponding value on the data stack.
Humbers are accepted from the input stream unsigned or negatively signed
and converted using the value of BASE . See: "number" "number
conversion”

layers
The grouping of word names of each Standard word set to show like
characteristics. No implementation requirements are implied by this

grouping.

layer, compiler
Word definitions which add new procedures to the dictionary or which aid
compilation by adding compilation addresses or data structures to the
dictionary.

layer, devices
Word definitions which allow access to mass storage and computer
peripheral devices.

layer, interpreter
Word definitions which support vocabularies, terminal output, and the
interpretation of text from the text input buffer or a mass storage
device by executing the corresponding word definitions.

layer, nucleus
Word definitions generally defined in machine code that control the
execution of the fundamental operations of a virtual FORTH machine. This
includes the address interpreter.

load
Redirection of the text interpreter’s input stream to be from mass
storage. This is the general methed for compilation of new definitions
into the dictionary.

mass storage
Storage which might reside outside FORTH’s address space. MNass storage
data is made available in the form of 1024-byte blocks. A block is
accessible within the FORTH address space in a block buffer. When a
block has been indicated as UPDATEed (modified) the block will ultimately
be transferred to mass storage.

)

182 Appendix F. Forth-83 Standard \
number Ll

When values exist within a larger field, the most-significant bits are

zero. 16-bit numbers are represented in memory by addressing the first

of two bytes at consecutive addresses. The byte order is unspecified by -

this Standard. Double numbers are represented on the stack with the

most-significant 16 bits (with sign) most accessible. Double numbers are

represented in memory by two comsecutive 16-bit numbers. The address of

the least-significant 16-bits is two greater than the address of the =

most-significant 16 bits. The byte order within each 16-bit field is

unspecified. See: "arithmetic, two’s complement" “number types"

"8.8 Numbers" "11.7 Stack Parameters" =
number conversion

Humbers are maintained intermally in binary and represented externally by

using graphic characters within the ASCII character set. Conversion
between the internal and external forms is performed using the current
value of BASE to determine the digits of a number. A digit has a value
ranging from zero to the value of BASE-1. The digit with the value zero ~
is represented by the ASCII character "0" (position 3/0 with the decimal
equivalent of 48). This representation of digits proceeds through the
ASCII character set to the character "9" corresponding to the decimal
value 9. For digits with a value exceeding 9, the ASCII graphic
characters beginning with the character "A" (position 4/1 with the
decimal equivalent 65) corresponding to the decimal value 10 are used.
This sequence then continues up to and including the digit with the =
decimal value 71 which is represented by the ASCII character "~" '
(position 7/14 with a decimal equivalent 126). A negative number may be
repregsented by preceding the digits with a single leading minus sign, the
character "-".

number types
All number types consist of some number of bits.” These bits are either =

arbitrary of are weighted.

Signed and unsigned numbers use weighted bits. Weighted bits within a

number have a value of a power of two beginning with the rightmost ‘
(least-significant) bit having the value of two to the zero power. This
veighting continues to the leftmost bit increasing the power by one for

each bit. For an unsigned number this weighting pattern includes the
leftmost bit; thus, for an unsigned 16-bit number the weight of the
leftmost bit is 32,768. For a signed number this weighting pattern
includes the leftmost bit, but the weight of the leftmost bit is negated; ~
thus, for a signed 16-bit number the weight of the leftmost bit is
-32,768. This weighting pattern for signed numbers is called two’s
complement notation.

fm&’,
Ungpecified weighted numbers are either unsigned numbers or signed
numbers; program context determines whether the number is signed or
unsigned. See: "11.7 Stack Parameters" “

S I

F.5. Definition of Terms 183

pictured numeric output
The use of numeric output definitions which convert numerical values into
text strings. These definitions are used in a sequence which resembles a
symbolic ’picture’ of the desired text format. Conversion proceeds from
least-significant digit to most-significant digit, and converted
characters are stored from higher memory addresses to lower.

program
A complete specification of execution to achieve a specific function
(application task) expressed in FORTE source code form.

receive
The process of obtaining one character from the current input device.
The selection of the current input device is system dependent.

recursion
The process of self-reference, either directly or indirectly.

return
The means of indicating the end of text by striking a key on an input
device. The key used is system dependent. This key is typically called
“RETURN", *“CARRIAGE RETURK", or “ENTER".

screen
Textual data arranged for editing. By convention, a screen consists of
16 lines (numbered O through 15) of 64 characters each. Screens usually
contain program source text, but may be used to view mass storage data.
The first byte of a screen occupies the first byte of a mass storage
block, which is the beginning point for text interpretation during a
load.

search order
A specification of the order in which selected vocabularies in the
dictionary are searched. Execution of a vocabulary makes it the first
vocabulary in the search order. The dictionary is searched whenever a
word is to be located by its name. This order applies to all dictionary
searches unless otherwise noted. The search order begins with the last
vocabulary executed and ends with FORTH , unless altered in a system
dependent manner.

source definition
Text consisting of word names suitable for compilation or execution by
the text interpreter. Such text is usually arranged in screens and
maintained on a mass storage device.

stack, data
A last in, first out list consisting of 16-bit binary values. This stack
is primarily used to hold intermediate values during execution of word

184 Appendix F. Forth-83 Standard

definitions. Stack values may represent numbers, characters, addresses,
boolean values, etc.

When the name ’stack’ is used alone, it implies the data stack.

stack, return
A last in, first out list which contains the addresses of word
definitions whose execution has not been completed by the address
interpreter. As a word definition passes control to another definitionm,
the return point is placed on the return stack.

The return stack may cautiously be used for other values.

string, counted
A Bequence of consecutive 8-bit bytes located in memory by their low
memory address. The byte at this address contains a count {0..266} of
the number of bytes following which are part of the string. The count
does not include the count byte itself. Counted strings usually contain
ASCII characters.

string, text
A sequence of consecutive 8-bit bytes located in memory by their low
memory address and length in bytes. Strings usually, but not
exclusively, contain ASCII characters. When the term ’string’ is used
alone or in conjunction with other words it refers to text strings.

structure, control
A group of FORTH words which when executed alter the execution sequence.
The group starts and terminates with compiler words. Examples of control

structures: DO ... LOOP DO ... +LOOP BEGIN ... WHILE ... REPEAT
BEGIN ... UNTIL IF ... THEN IF ... ELSE ... THEN See: "9.9 Control
Structures"

transportability

This term indicates that equivalent execution results when a program is
executed on other than the system on which it was created.
See: "equivalent execution”

true
A non-zero value represents the true state of a flag. Any non-zero value
will be accepted by a standard word as ’true’; all standard words return
a 16-bit value with all bits set to one when returning a ’true’ flag.

user area
An area in memory which contains the storage for user variables.

variable, user
A variable whose data storage area is usually located in the user arpa.
Some system variables are maintained in the user area so that the words
may be re-entrant to different users.

= .y

(F.5. Definition of Terms 185

j vocabulary

- An ordered list of word definitions. Vocabularies are an advantage in

- separating different word definitions that may have the same name. More

L than one definition with the same name can exist in one vocabulary. The

L latter is called a redefinition. The most recently created redefinition
will be found when the vocabulary is searched.

: vocabulary, compilation

i The vocabulary into which new word definitions are appended.

word

- A sequence of characters terminated by one blank or the end of the input
stream. Leading blanks are ignored. Words are usually obtained via the

& input stream.

word definition
o A named FORTH execution procedure compiled into the dictionary. 1Its
; execution may be defined in terms of machine code, as a sequence of
compilation addresses, or other compiled words.

= word name

The name of a word definition. Word names are limited to 31 characters
and may not contain an ASCII space. If two definitions have different
= word names in the same vocabulary they must be uniquely findable when

{ this vocabulary is searched. See: "vocabulary" "9.5.3 EXPECT"

vord set
A named group of FORTH word definitions in the Standard.

word set, assembler extension
™ Additional words which facilitate programming in the native machine

language of the computer which are by nature system dependent.

word set, double number extension

fm Additional words which facilitate manipulation of 32-bit numbers.
word set, required

e The minimum words needed to compile and execute Standard Programs.
word set, system extension

- Additional words which facilitate the access to intermal system

: characteristics.

!
word, standard

= A named FORTH procedure definition, in the Required word set or any

| extension word sets, formally reviewed and accepted by the Standards

Teanm.
i
l

186 Appendix F. Forth-83 Standard

F.12 Required Word Set
F.12.1 The Required Word Set Layers

The words of the Required Word Set ars grouped to show like
characteristics. No implementation requirements should be inferred from

this grouping.

Hucleus layer

! = s/ s/MOD + +¢ - / /MDD 0< 0= 0> 1+ 1-

2+ 92- 9/ <« = > >R IMUP €@ ABS AND C! Ce CMOVE
CMOVE> COUET D+ D< ©DEPTH DREGATE DROP DUP EXECUTE EXIT
FILL I J MAX MIN MOD NEGATE NOT OR OVER PICK R>

Re¢ ROLL ROT SWAP U< UM* UN/MOD XOR

Device layer

BLOCK BUFFER CR EMIT EXPECT FLUSH KEY SAVE-BUFFERS
SPACE SPACES TYPE UPDATE

Interpreter layer

#> #S #TIB ! (-TRAILING . .(<& >BODY >IN
ABORT BASE BLK CONVERT DECIMAL DEFINITIONS FIRD FORGET
FORTE FORTH-83 HERE EOLD LOAD PAD QUIT SIGN SPAN TIB
U. WORD

Compiler layer

+L00OP |, .* : ; ABORT* ALLOT BEGIN COMPILE CONSTANT
CREATE DO DOES> ELSE IF IMMEDIATE LEAVE LITERAL LOOP
REPEAT STATE THEN UNTIL VARIABLE VOCABULARY WHILE [[’]
(COMPILE]]

F.12.2 The Required Word Set Glossary

! 16b addr -- 79 “store"
16b is stored at addr.

+dl -- +d2 79 *gharp"
The remainder of +di divided by the value of BASE is converted to an
ASCII character and appended to the output string toward lower memory
addresses. +d2 is the quotient and is maintained for further processing.
Typically used between <# and #> .

> 32b -- addr +n 79 “gharp-greater"
Pictured numeric output conversion is ended dropping 32b. addr is the

3

P

1

"3

O

F.12. Required Word Set

#s

#TIB

./

187

address of the resulting output string. +n is the number of characters
in the output string. addr and +n together are suitable for TYPE .

+4d -- 00 £ “sharp-s"
+d is converted appending each resultant character into the pictured
numeric output string until the quotient (see: #) is zero. A single
zero is added to the output string if the number was initially zero.
Typically used between <# and #> .

== addr v,83 “"aumber-t-i-b"
The address of a variable containing the number of bytes in the text
input buffer. #TIB is accessed by WORD when BLK is zero. {{0..capacity
of TIB}} See: “input stream"

-- addr X,83 "tick"
Used in the form:
? <name>
addr is the compilation address <name>. An error condition exists
if <name> is not found in the currently active search order.

- I,M,83 “paren”

- (compiling)
Used in the form:

(<cce>)

The characters <ccc>, delimited by) (closing parenthesis), are
considered comments. Comments are not otherwise processed. The blank
following (is not part of <ccc>. (may be freely used while
interpreting or compiling. The number of characters in <ccc> may be from
zero to the number of characters remaining in the input stream up to the
closing parenthesis.

vl w2 -- w3 79 “times"
v3 is the least-significant 16 bits of the arithmetic product of wi times
v2.

ni n2 r3 -- n4 83 “times-divide"
nl is first multiplied by n2 producing an intermediate 32-bit result. n4
is the floor of the quotient of the intermediate 32-bit result divided by
the divisor n3. The product of ni1 times n2 is maintained as an
intermediate 32-bit result for greater precision than the otherwise
equivalent sequence: ni n2 * n3 / . An error condition results if the
divisor is zero or if the quotient falls outside of the range
{-32,768..32,767}. See: "division, floored"

*/MOD nil n2 n3 -- n4 nb 83 "times-divide-mod”

nl is first multiplied by n2 producing an intermediate 32-bit result. n¢
ig the remainder and n5 is the floor of the quotient of the intermediate
32-bit result divided by the divisor n3. A 32-bit intermediate product
is used as for */ . n4 has the same sign as n3 or is zero. An error

188

Appendix F. Forth-83 Standard

condition results if the divisor is zero of if the quotient falls outside
of the range {-32,768..32,767}. See: “division, floored"

+ vi w2 -- w3 79 "plus"
w3 is the arithmetic sum of wi plus w2.

+! vl addr -- 79 “plus-store"
vl is added to the w value at addr using the convention for + . This sum
replaces the original value at addr.

+L0O0P n -- c,I1,83 “plus-loop"

sys -- (compiling)
n is added to the loop index. If the new index was incremented across
the boundary between limit-1 and limit then the loop is terminated and
loop control parameters are discarded. When the loop is not terminated,
execution continues to just after the corresponding DO . s8ys is balanced
with its corresponding DO . See: DO

s 16b -- 79 *comma"
ALLOT space for 16b then store 16b at HERE 2- .

- vi 92 ~- w3 79 “minus"
w3 is the result of subtracting w2 from wi.

-TRAILING addr +ni1 -- addr +n2 79 "dash-trailing"
The character count +nl of a text string beginning at addr is adjusted to
exclude trailing spaces. If +nl is zero, thenm +n2 is also zero. If the
entire string consists of spaces, then +n2 is zero.

. n -- N, 79 “dot"
The absolute value of n is displayed in a free field format with a
leading minus s8ign if n is negative.)

. - C,i,83 "dot-quote”

- (compiling)
Used in the form:
R ”" <ccc>u
Later execution will display the characters <ccc> up to but not including
the delimiting " (close-quote). The blank following ." is mot part of
<cce>.
. (- 1,M,83 “dot-paren"
- (compiling)
Used in the form:
.(<ece>)
The characters <ccc> up to but not including the delimiting) (closing
parenthesis) are displayed. The blank following .(is not part of <ccc>.
/ ni n2 -- n3 83 "divide”

n3 is the floor of the quotient of nl divided by the divisor n2. An

f F.12. Required Word Set 189
x error condition results if the divisor is zero or if the quotient falls
rm outside of the range {-32,768..32,767}. See: "division, floored"

/MOD ni n2 -~ n3 n4é 83 *divide-mod"
f“ n3 is the remainder and n4¢ the floor of the quotient of ni divided by the

. divisor n2. n3 has the same sign as n2 or is 2ero. An error condition
‘ results if the divisor is zero or if the quotient falls outside of the
range {-32,768..32,767}. See: “division, floored"

k o< n -- flag 83 “zero-less"
flag is true if n is less than zero (negative).
L 0= w —— flag 83 “zero-equals"
flag is true if w is zero.
i o> n -- flag 83 "zero-greater"
' flag is true if n is greater than zero.
= 1+ vl —- w2 79 “one-plus"
i w2 is the result of adding ome to wi according to the operation of + .
Fm i- w1l -- w2 79 “one-minus"
| ¥2 is the result of subtracting one from wil according to the operation of
r 2+ vl -- w2 79 “two-plus"
| w2 is the result of adding two to wl according to the operation of + .
= 2- wi -~ w2 79 "“two-minus"
w2 is the result of subtracting two from w1 according to the operation of
F‘V& Y Py
' 2/ nl --n2 83 “two-divide"
L n2 is the result of arithmetically shifting ni right one bit. The sign
is included in the shift and remains unchanged.
| : -= 8ys M,79 "colon"
) A defining word executed in the form:
: <name> ... ;

Create a vord definition for <name> in the compilation vocabulary and
set compilation state. The search order is changed so that the first
vocabulary in the search order is replaced by the compilation vocabulary.
& The compilation vocabulary is unchanged. The text from the input stream
i is subsequently compiled. <name> is called a "colon definition". The

) newly created word definition for <mame> cannot be found in the

. dictionary until the corresponding ; or ;CODE is successfully processed.

An error conditior. exists if a word is not found and cannot be converted
to a number or if, during compilation from mass storage, the input stream

190 Appendix F. Forth-83 Standard
is exhausted before encountering ; or ;CODE . sys is balanced with its
corresponding ; . See: "compilation" "9.4 Compilation”

H - Cc,I,79 “*semi-colon"

sys -- (compiling)
Stops compilation of a colon definition, allows the <name> of this
colon definition to be found in the dictionary, sets interpret state and
compiles EXIT (or a system dependent word which performs an equivalent
function). s8ys is balanced with its corresponding : . See: EXIT
“gtack, return" "9.4 Compilation”

< ni n2 -- flag 83 *less-than"
flag is true if n1 is less than n2.
~-32768 32767 < must return true.
-32768 0 < must return true.

<# - 79 *less-gharp"
Initialize pictured numeric output comversion. The words:
#> #5 <# BOLD SIGN
can be used to specify the conversion of a double number into an ASCII
text string stored in right-to-left order.

wl w2 - {flag 83 *equals"
flag is true if wi is equal to w2.

> nil n2 -- flag 83 “greater-than"
flag is true if nl is greater than n2.
-32768 32767 > must return false
-32768 0 > must return false

>BODY addr -- addr2 83 “to-body"
addr2 is the parameter field address correspoending to the compilation
address addrl. See: "9.2 Addressable Hemory"

>IN ~- addr U,79 “to-in"
The address of a variable which contains the present character offset
within the input stream {{0..the number of characters in the input
stream}}. See: WORD

>R 16b -—- cC,79 Yto-x"
Transfers 16b to the return stack. See: "9.3 Return Stack"

?DUP 16b -- 16b 16b 79 “question-dupe"
or 0 --0
Duplicate 16b if it is non-zero.

] addr -- 16b 79 “fetch"
i6b is the value at addr.

ABORT 79

3

.3

3

.3 3

3

3

lioel “‘g

—

F.12. Required Word Set 191
Clears the data stack and performs the function of QUIT . Ko message is
displayed.

ABORT" tlag -~ c,1,83 "abort-quote"

- (compiling)

Used in the form:
f£lag ABORT" <cce>"

When later executed, if flag is true the characters <ccc>, delimited by
* (close-quote), are displayed and then a system dependent error abort
sequence, including the function of ABORT , is performed. If flag is
false, the flag is dropped and execution continues. The blank following
ABORT" is not part of <ccc>.

ABS n--u 79 “absolute"
u is the absolute value of n. If n is -32,768 then u is the same value.
See: ‘"arithmetic, two’s complement"

ALLOT v -- 79

Allocates w bytes in the dictionary. The address of the next available
dictionary location is updated accordingly.

AND 16b1 16b2 -- 16b3 79
16b3 is the bit-by-bit logical ’and’ of 16bi with 16b2.

BASE == addr U,83
The address of a variable containing the current numeric conversion
radix. {{2..72}}

BEGIN -- c,1,79
-- gys (compiling)

Used in the form:

BEGIN ... flag UNTIL

or

BEGIN ... flag WHILE ... REPEAT
BEGIN marks the start of a word sequence for repetitive execution. A
BEGIN-UNTIL loop will be repeated until flag is true. A
BEGIN-WHILE-REPEAT loop will be repeated until flag is false. The words
after UNTIL or REPEAT will be executed when either loop is finished. sys
is balanced with its corresponding UNTIL or WHILE . See: "9.9 Control
Structures"

BLK -- addr U,79 “b-1-k"
The address of a variable containing the number of the mass storage block
being interpreted as the input stream. If the value of BLK is zero the
input stream is taken from the text input buffer. {{0..the number of
blocks available -1}} See: TIB ‘“input stream"

BLOCK u -- addr M,83
addr is the address of the assigned buffer of the first byte of block u.

192 Appendix F. Forth-83 Standard

If the block occupying that buffer is mot block u and has been UPDATEed
it is transferred to mass storage before assigning the buffer. If block
u is not already in memory, it is transferred from mass storage into an
assigned block buffer. A block may not be assigned to more than one
buffer. If u is not an available block number, an error condition
exists. Only data within the last buffer referenced by BLOCK or BUFFER
is valid. The contents of a block buffer must not be changed unless the
change may be transferred to mass storage.

BUFFER u -- addr M,83
Assigns a block buffer to block u. addr is the address of the first byte
of the block within its buffer. This function is fully specified by the
definition for BLOCK except that if the block is not already in memory it
might not be transferred from mass storage. The contents of the block
buffer assigned to block u by BUFFER are unspecified.

c! 16b addr -- 79 “c-gtore"
The least-significant 8 bits of 16b are stored into the byte at addr.

ce addr -- 8b 79 "c-fetch”
8b is the contents of the byte at addr.

CMOVE addri addr2 u -- 83 “c-move"
Move u bytes beginning at address addri to addr2. The byte at addri
is moved first, proceeding toward high memory. If u is zero nothing is
moved.

CMOVE> addri addr2 u -- 83 "c-move-up"
Move the u bytes at address addri to addr2. The move begins by moving
the byte at (addri plus u minus 1) to (addr2 plus u minus 1) and proceeds
to successively lower addresses for u bytes. If u is zero nothing is
moved. (Useful for sliding a string towards higher addresses).

COMPILE -- c,83
Typically used in the form:
: <name> ... COMPILE <namex> ... ;
When <name> is executed, the compilation address compiled for <namex> is
compiled and not executed. <name> is typically immediate and <pamex> is
typically not immediate. See: “compilation"

COHSTART 16b —- X,83
A defining word executed in the form:
16b CONSTANT <name>
Creates a dictionary entry for <name> so that vhen <name> is later
executed, 18b will be left on the stack.

CONVERT +dl addri -- +d2 addr2 79
+d2 is the result of converting the characters within the text beginning
at addri+i into digits, using the value of BASE , and accumulating each
into +d1 after multiplying +d1 by the value of BASE . Conversion

T3

F.12. Required Word Set ' 193

continues until an unconvertible character is encountered. addr2 is the
location of the first unconvertible character.

COUNT addri -- addr2 +n 79
addr2 ie addri+l and +n is the length of the counted string at addri.
The byte at addrl contains the byte count +n. Range of +n is {0..255}.
See: "string, counted”

CR - o . 79 Neey"
Displays a carriage-return and line-feed or equivalent operation.

CREATE -- X,79

A defining word executed in the form:
CREATE <name>

Creates a dictionary entry for <name>. After <name> is created, the
next available dictionary location is the first byte of <name>'’s
parameter field. When <name> is subsequently executed, the address of
the firet byte of <name>’s parameter field is left on the stack.
CREATE does not allocate space in <name>’s parameter field.

D+ wdl wd2 -- wd3 79 “d-plus"
wd3 is the arithmetic sum of wdi plus wd2.

D< d1 42 -- flag 83 "d-less-than"
flag is true if di is less than d2 according to the operation of < except
extended to 32 bits.

DECIMAL -- 79
Set the input-output numeric conversion base to ten.

DEFINITIONS -- 79
The compilation vocabulary is changed to be the same as the first
vocabulary in the search order. See: "vocabulary, compilation"

DEPTH -= 4n 79
+n is the number of 16-bit values contained in the data stack before +n
vas placed on the stack.

DNEGATE d1i -- d2 79 “d-negate"
d2 is the two’s complement of di.

DO wl w2 -—- c,1,83
-- 8ys (compiling)

Used in the form:

DO ... LOOP

or

DO ... +LOOP
Begins a loop which terminates based on control parameters. The loop
index begins at w2, and terminates based on the limit wi. See LOOP and

194 Appendix F. Forth-83 Standard

+LO0OP for details on how the loop is terminated. The loop is always
executed at least once. For example: w DUP DO ... LOOP executes 65,536
times. sys is balanced with its corresponding LOOP or +LOOP .

See: "9.9 Control Structures"

An error condition exists if insufficient space is available for at least
three nesting levels.

DOES> -- addr c,I1,83 “does"
- (compiling)
Defines the execution-time action of a word created by a high-level
defining word. Used in the form:
¢ <pnamex> ... <create> ... DOES> ... ;
and then
<namex> <name>
where <create> is CREATE or any user defined word which executes CREATE .

Marks the termination of the defining part of the defining word <namex>
and then begins the definition of the execution-time action for words
that will later be defined by <namex>. When <name> is later executed,
the address of <name>’s parameter field is placed on the stack and then
the sequence of words between DOES> and ; are executed.

DROP 16b -~ 79
16b is removed from the stack.

DUP 16b -- 16b 16b 79 "dupe"
Duplicate 16b.

ELSE - c,1,79
sysi -- sys2 (compiling)
Used in the form:

flag IF ... ELSE ... THEN
ELSE executes after the true part following IF . ELSE forces execution
to continue at just after THEN . s8ysl is balanced with its corresponding

IF . s8ys2 is balanced with its corresponding THEN . See: IF THEN

EMIT 16b -- M,83
The least-significant 7-bit ASCII character is displayed. See: "8.5.3
EMIT"

EXECUTE addr =-- 79

The word definition indicated by addr is executed. An error condition
exists if addr is not a compilation address.

EXIT -- c,79
Compiled within a colon definition such that when executed, that colon
definition returms control to the definition that passed control to it by
returning control to the returm point on the top of the return stack. An
error condition exists if the top of the return stack does not contain a

T

J—

1

3

r

R

F.12. Required Word Set 195

valid return point. May not be used within a do-loop.
See: ; ‘"stack, return" "8.3 Return Stack"

EXPECT addr +n -~ M,83

FILL

FIND

FLUSH

Receive characters and store each into memory. The transfer begins at
addr proceeding towards higher addresses one byte per character until
either a "return” is received or until +n characters have been
transferred. No more than +n characters will be stored. The “return” is
not stored into memory. HNo characters are received or transferred if +n
is zero. All characters actually received and stored into memory will be
displayed, with the "return" displaying as a space. See: SPAN

"9.5.2 EXPECT"

addr u 8b -~ 83
u bytes of memory beginning at addr are set to 8b. No action is taken if
u is zero.

addr1l -- addr2 n 83
addrl is the address of a counted string. The string contains a word
name to be located in the currently active search order. 1If the word is
not found, addr2 is the string address addri, and n is zero. If the word
is found, addr2 is the compilation address and n is set to one of two
non-zero values. If the word found has the immediate attribute, n is set
to one. If the word is non-immediats, n is set to minus one (true).

-— M,83
Performs the function of SAVE-BUFFERS then unassigns all block buffers.
(This may be useful for mounting or changing mass storage media).

FORGET - M,83

FORTH

Used in the form:

FORGET <name>
If <pname> is found in the compilation vocabulary, delete <name> from
the dictionary and all words added to the dictionary after <name>
regardless of their vocabulary. Failure to find <name> is an error
condition. An error condition also exists if the compilation vocabulary
iz deleted. See: "10.2 General Error Conditions"

- 83
The name of the primary vocabulary. Execution replaces the first
vocabulary in the search order with FORTH . FORTH is initially the
compilation vocabulary and the first vocabulary in the search order. New
definitions become part of the FORTH vocabulary until a different
compilation vocabulary is established. See: VOCABULARY

FORTH-83 - 83

Assures that a FORTH-83 Standard System is available, otherwise an error
condition exists.

196 Appendix F. Forth-83 Standard

HERE -- addr 79
The address of the next available dictionary location.

HOLD char -- 78
char is inserted into a pictured numeric output string. Typically used
between <# and #> .

I -—w C,79
¥ is a copy of the loop index. May only be used in the form:
DO ... I ... LOOP
or
DO ... I ... +LOOP
IF flag -- c,I1,79

-~ 8ys (compiling)

Used in the form:

flag IF ... ELSE ... THEX

or
flag IF ... THEN
If flag is true, the words following IF are executed and the words

following ELSE until just after THEN are skipped. The ELSE part is
optional.

If flag is false, words from IF through ELSE , or from IF through THEN
(vhen no ELSE is used), are skipped. s8ys is balanced with its
corresponding ELSE or THEN . See: 9.9 Control Structures"

IMMEDIATE -- 79
Marks the most recently created dicticnary entry as a word which will be
executed when encountered during compilation rather than compiled.

J - v C,79
¥ is a copy of the index of the next cuter loop. May only be used within
a nested DO-LOOP or DO-+LOOP in the form, for example:
DO ... DO ... J ... LOOP ... +LOOP

KEY -- 16b M,83
The least-significant 7 bits of 16b is the next ASCII character received.
All valid ASCII characters can be received. Control characters are not
processed by the system for any editing purpose. Characters received by
KEY will not be displayed. See: "8.5.1 KEY"

LEAVE -= c,1,83
- (compiling)
Transfers execution to just beyond the next LOOP or +LOOP . The loop is
terminated and loop control parameters are discarded. May only be used
in the form:
DO ... LEAVE ... LOOP
or

Tl

-

T3

3

i

F.12. Required Word Set 197

DO ... LEAVE ... +LOOP
LEAVE may appear within other control structures which are nested within
the do-loop structure. Hore than one LEAVE may appear within a do-loop.
See: "9.3 Return Stack"

LITERAL -- 16b c,1,79
16b —- (compiling)
Typically used in the form:
[16b] LITERAL
Compiles a system dependent operatiom so that when later executed, 16b
will be left on the stack.

LOAD u - X,79
The contents of >IN and BLK , which locate the current input stream, are
saved. The input stream is then redirected to the beginning of screen u
by setting >IN to zero and BLK to u. The screen is then interpreted. 1If
interpretation from screen u is not terminated explicitly it will be
terminated when the input stream is exhausted and then the contents of
>IN and BLK will be restored. An error condition exists if u is zero.
See: >IN BLK BLOCK

LOOP - c,1,83
sys -- (compiling)
Increments the DO-LOOP index by one. If the new index was incremented
across the boundary between limit-1 and limit the loop is terminated and
loop control parameters are discarded. When the loop is not terminated,
execution continues to just after the corresponding DO . s8ys is balanced
with its corresponding DO . See: DO

MAX nl n2 -- n3 79 "max"
n3 is the greater of ni and n2 according to the operation of > .

MIE ni n2 -- n3 79 "min"
n3 is the lesser of nl and n2 according to the operation of < .

MOD ni n2 -- n3 83
n3 is the remainder after dividing ni by the divisor n2. n3 has the same
sign as n2 or is zero. An error condition results if the divisor is zero
or if the quotient falls outside of the range {-32,768..32,767}.
See: "division, floored"

NEGATE ni -- n2 79
n2 is the two’s complement of ni, i.e., the difference of zero less ni.

HOT 16bi -~ 16b2 83
18b2 is the one’s complement of 16bi.

OR 16b1 16b2 -- 16b3 79
16b3 is the bit-by-bit inclusive-or of 16bl with 16b2.

198 Appendix F. Forth-83 Standard

OVER 16bi 16b2 -- 16b1i 16b2 16b3 79
16b3 is a copy of 16bi.

PAD -- addr 83
The lower address of a scratch area used to hold data for intermediate
processing. The address or contents of PAD may change and the data lost
if the address of the next available dictionary location is changed. The
minimum capacity of PAD is 84 characters.

PICK +n —— 16b 83
16b is a copy of the +nth stack value, not counting +n itself. {0..the
number of elements on stack-1}
0 PICK is equivalent to DUP
1 PICK is equivalent to OVER

QUIT - 79
Clears the return stack, sets interpret state, accepts new input from the
current input device, and begins text interpretation. MNo message is
digplayed.

R> -~ 16b C,79 “r-from"
16b is removed from the return stack and transferred to the data stack.
See: "9.3 Return Stack"

RG -- 16b C,79 "r-fetch"
16b is a copy of the return stack.

REPEAT - c,I,79
sys -- (compiling)
Used in the form:
BEGI¥ ... flag WHILE ... REPEAT
At execution time, REPEAT continues execution to just after the
corresponding BEGIN . sys is balanced with its corresponding WEILE .
See: BEGIN

ROLL +n -- 83
The +nth stack value, not counting +n itself is first removed and then
transferred to the top of the stack, moving the remaining values into the
vacated position. {0..the number of elements on the stack-1}
2 ROLL is equivalent to ROT
0 ROLL is a null operation

ROT 16b1 16b2 16b3 -- 16b2 16b3 16b1 79 "rote"
The top three stack entries are rotated, bringing the deepest to the top.

SAVE-BUFFERS - M,79 "save-buffers"
The contents of all block buffers marked as UPDATEed are written to their
corresponding mass storage blocks. All buffers are marked as no longer
being modified, but may remain assigned.

L

F.12. Required Word Set 199
SIGN n -- 83
If n is negative, an ASCII "-" (minus sign) is appended to the pictured

numeric output string. Typically used between <# and #> .

SPACE - M, 79
Displays an ASCII space.

SPACES +n -—- M,79
Displays +n ASCII spaces. Nothing is displayed if +n is zero.

SPAN -- addr U,83
The address of a variable containing the count of characters actually
received and stored by the last execution of EXPECT . See: EXPECT

STATE -- addr u,79
The address of a variable containing the compilation state. A non-zero
content indicates compilation is occurring, but the value itself is
system dependent. A Standard Program may not modify this variable.

SWAP 16b 16b2 -- 16b2 16bi 79
The top two stack entries are exchanged.

THER - CDII79
sys -—- (compiling)

Used in the form:

flag IF ... ELSE ... THEN

or

flag IF ... THER
THEN is the point where execution continues after ELSE , or IF when no
ELSE is present. sys is balanced with its corresponding IF or ELSE .
See: IF ELSE

TIB -- addr 83 "¢-i-b"
The address of the text input buffer. This buffer is used to hold
characters when the input stream is coming from the current input device.
The minimum capacity of TIB is 80 characters.

TYPE addr +n -- M,79
+n characters are displayed from memory beginning with the character at
addr and continuing through consecutive addresses. Nothing is displayed
if +n is zero. See: "9.5.4 TYPE"

v. u —- X,79 "u-dot"
u is displayed as an unsigned number in a free-field format.

U< ul u2 -- flag 83 *u-less-than"
flag is true if ul is less than u2.

UM= ul u2 -- ud 83 "u-m-times"”

200 Appendix F. Forth-83 Standard WW‘
ud is the unsigned product of ul times u2. All values and arithmetic are o
unsigned.

UM/MOD ud i -- u2 u3 83 "u-m-divide-mod"
u2 is the remainder and u3 is the floor of the quotient after dividing ud L
by the divisor uil. All values and arithmetic are unsigned. An error l
condition results if the divisor is zero or if the quotient lies outside
the range {0..65,536}. See: "floor, arithmetic™ -

!

UNTIL flag -- . Cc,I,79

sys —— (compiling)
Used in the form: i
BEGIN ... flag URTIL
Marks the end of a BEGIN-UNTIL loop which will terminate based on flag.
If flag is true, the loop is terminated. If flag is false, execution o=
continues to just after the corresponding BEGIN . sys is balanced with
its corresponding BEGIN . See: BEGIN

UPDATE -- 79 i
The currently valid block buffer is marked as modified. Blocks marked as 5
modified will subsequently be automatically transferred to mass storage
should its memory buffer be needed for storage of a differemt block or il
upon execution of FLUSH or SAVE-BUFFERS .)

VARIABLE -- M,79
A defining word executed in the form:
VARIABLE <name>

A dictionary entry for <mame> is created and two bytes are ALLOTted in
its parameter field. This parameter field is to be used for contents of R
the variable. The application is responsible for imitializing the
contents of the variable which it creates. When <name> is later
executed, the address of its parameter field is placed on the stack. dﬁ

VOCABULARY - M,83

A defining word executed in the form:

VOCABULARY <name>
A dictionary entry for <name> is created which specifies a new ordered
list of word definitions. Subsequent execution of <name> replaces the
first vocabulary in the search order vith <mame>. When <name> -y
becomes the compilation vocabulary new definitions will be appended to .
<name>’s list. See: DEFINITIONS ‘search order"

WHILE flag -- c,I,79
sysl -- Bys2 (compiling)
Used in the form:
BEGIN ... flag WHILE ... REPEAT =y
Selects conditional execution based on flag. When flag is true, '
execution continues to just after the WHILE through to the REPEAT which
then continues execution back to just after the BEGIN . When flag is

F.12. Required Word Set 201

WORD

false, execution continues to just after the REPEAT , exiting the contrel
structure. sysl is balanced with its corresponding BEGIN . s8ys2 is
balanced with its corresponding REPEAT . See: BEGIN

char -- addr ' M,83
Generates a counted string by non-destructively accepting characters from
the input stream until the delimiting character char is encountered or
the input stream is exhausted. Leading delimiters are ignored. The
entire character string is stored in memory beginning at addr as a
sequence of bytes. The string is followed by a blank which is mnot
included in the count. The first byte of the string is the number of
characters {0..255}. If the string is longer than 255 characters, the
count is unspecified. If the input stream is already exhausted as WORD
is called, then a zero length character string will result.

If the delimiter is not found the value of >IN is the size of the input
stream. If the delimiter is found >IN is adjusted to indicate the offset
to the character following the delimiter. #TIB is unmodified.

The counted string returned by WORD may reside in the "free" dictionary
area at HERE or above. MNote that the text interpreter may also use this
area. See: "input stream"

XOR 16b1 16b2 —- 16b3 79 *x-or"
16b3 is the bit-by-bit exclusive-or of 16bl with 16b2.
C - 1,78 “left-bracket"
- (compiling)
Sets interpret state. The text from the input stream is subsequently
interpreted. For typical usage see LITERAL . See:]
] -- addr c,I,M,83 “bracket-tick"
- (compiling)
Used in the form:
[’] <name>
Compiles the compilation address addr of <name> as a literal. When the
colon definition is later executed addr is left on the stack. An error
condition exists if <name> is not found in the currently active search
order. See: LITERAL
[COMPILE]) - C,I,M,79 "bracket-compile"
- (compiling)
Used in the form:
[COMPILE] <name>
Forces compilation of the following word <name>. This allows
compilation of an immediate word when it would otherwise have been
executed.
] -- 79 "right-bracket"

Sets compilation state. The text from the input stream is subsequently

202 Appendix F. Forth-83 Standard

compiled. For typical usage see LITERAL . See: [

F.13 Double Number Extension Word Set
F.13.1 Double Number Extension Word Set Layers

Hucleus layer

2! 20 2DROP 2DUP 20VER 2ROT 2SWAP D+ D- DO= D2/
D< D= DABS DMAX DMIN DNEGATE DU<

Device Layer
none

Interpreter layer
D. D.R

Compiler layer

2CORSTANT 2VARIABLE

F.13.2 The Double Number Extension Word Set Glos-
sary

2! 32b addr -- 79 "two-store"
32b is stored at addr. See: “number"

20 addr -- 32b 79 “two~-fetch"
32b is the value at addr. See: "number"

2CONSTART 32b -- M,83 “two-constant"
A defining word executed in the form:
32b 2CONSTANT <name>
Creates a dictionary entry for <name> so that when <name> is later
executed, 32b will be left on the stack.

2DROP 32b -- 79 "two-drop"
32b is removed from the stack.

2DUP 32b -- 32b 32b 79 “two-dupe"
Duplicate 32b.

20VER 32b1 32b2 -- 32b1 32b2 32b3 79 "two-over"
32b3 is a copy of 32bi.

2ROT ' 32b1 32b2 32b3 -- 32b2 32b3 32bi1 79 ‘two-rote"

T3

R

P

P

F.13. Double Number Extension Word Set 203

The top three double numbers on the stack are rotated, bringing the third
double number to the top of the stack.

2SVAP 32bi 32b2 -- 32b2 32b1 79 "two~swap"

The top double numbers are exchanged.

2VARIABLE - u,79 “two-variable"

D+

DO=

D2/

D<

DABS

A defining word executed in the form:

2VARIABLE <name>
A dictionary entry for <name> is croated and four bytes are ALLOTted in
its parameter field. This parameter field is to be used for contents of
the variable. The application is respomsible for initializing the
contents of the variable which it creates. When <name> ig later
executed, the address of its parameter is placed on the stack.
See: VARIABLE

wdl wd2 -- wd3 79
See the complete definition in the Required Word Set.

wdl wd2 -- wd3 79 “d-minus"
wd3 is the result of subtracting wd2 from wdi.

--d M,79 "d-dot"
The absolute value of d is displayed in a free field format. A leading
negative sign is displayed if d is negative.

d +n -- M,83 “d-dot-r"
d is converted using the value of BASE and then displayed right aligned
in a field +n characters wide. A leading minus sign is displayed if 4 is
negative. If the number of characters required to display d is greater
than +n, an error condition exists. See: "number conversion"

wd -- flag 83 "d-zero-equals"
flag is true if wd is zero.

d1 -- d2 83 "d-two-divide"
d2 is the result of di arithmetically shifted right one bit. The sign is
included in the shift and remains unchanged.

di d2 -- flag 83
See the complete definition in the Required Word Set.

wdi wd2 -- flag 83 "d-equal"
flag is true if wdl equals wd2.

d -~ ud 79 “d-absolute"”
ud is the absolute value of d. If d is -2,147,483,648 then ud is the
same value. See: "arithmetic, two’s complement"

204 Appendix F. Forth-83 Standard

DMAX a1 42 -- 43 79 *d-max"
d3 is the greater of di and d2.

DMIN di d2 —— d3 79 "d-min"
d3 is the lesser of di and d2.

DREGATE dt -- 42 79
See the complete definition in the Required Word Set.

DU« udi vd2 —- flag 83 “d-u-less"
flag is true if udl is less than ud2. Both numbers are unsigned.

F.14 Assembler Extension Word Set
F.14.1 The Assembler Extension Word Set Layers

Hucleus layer
none

Device layer
none

Interpreter layer
ASSEMBLER

Compiler layer

;CODE CODE END-CODE

F.14.2 Assembler Extension Word Set Usage

Because of the system dependent nature of machine language programming, a
Standard Program cannot use CODE or ;CODE .

F.14.3 The Assembler Extension Word Set Glossary

;CODE - c,I,79 “gemi-colon—code"
sysl -- sys2 (compiling)
Used in the form:
: <namex> ... <create> ... ;CODE ... END-CODE
Stops compilation, terminates the defining word <namex> and executes
ASSEMBLER. When <namex> is executed in the form:
<namex> <name>
to define the new <name>, the execution address of <name> will
contain the address of the code sequence following the ;CODE in <namex>.

L

LY

om

pom

F.15. The System Extension Word Set | 205

Execution of any <name> will cause this machine code sequence to be
executed. 8ysl is balanced with its corresponding : . 8ys2 is balanced
with its corresponding ERD-CODE . See: CODE DOES>

ASSEMBLER - 83
Execution replaces the first vocabulary in the search order with the
ASSEMBLER vocabulary. See: VOCABULARY

CODE -- 8y8 N,83
A defining word executed in the form:
CODE <name> ... END-CODE

Creates a dictionary entry for <name> to be defined by a following
sequence of assembly language words. Words thus defined are called code
definitions. This newly created word definition for <name> cannot be
found in the dictionary until the corresponding END-CODE is successfully
processed (see: END-CODE). Executes ASSEMBLER . sys is balanced with
its corresponding END-CODE .

END-CODE 8ys -- 79 “end-code"
Terminates a code definition and allows the <name> of the corresponding

cede definition to be found in the dictionary. sys is balanced with its
corresponding CODE or ;CODE . See: CODE

F.15 The System Extension Word Set
F.15.1 The System Extension Word Set Layers

Hucleus layer
BRANCH ?BRANCH
Device layer
none
Interpreter layer
CONTEXT CURRENT
Compiler layer

<MARK <RESOLVE >MARK >RESOLVE

F.15.2 System Extension Word Set Usage

After BRANCH or 7BRANCH is compiled, >MARK or >RESOLVE is executed. The
addr left by >MARK is passed to >RESOLVE . The addr left by <MARK is
passed to <RESOLVE . For example:

206 Appendix F. Forth-83 Standard

: IF COMPILE ?BRANCH >MARK ; IMMEDIATE
: THEN >RESOLVE ; IMMEDIATE

F.15.3 The System Extension Word Set Glossary

<MARK -- addr c,83 “backvard-mark"
Used at the destination of a backward branch. addr is typically only
used by <RESOLVE to compile a branch address.

<RESOLVE addr -- c,83 “backward-resolve”
Used at the source of a backward branch after either BRANCH or ?BRANCH .
Compiles a branch address using addr as the destination address.

>MARK -- addr c,83 “forvard-mark"
Used at the source of a forward branch. Typically used after either
BRANCH or 7BRANCH . Compiles space in the dictionary for a branch
address which will later be resolved by >RESOLVE .

>RESOLVE addr -- c,83 "forward-resolve"
Used at the destination of a forward btranch. Calculates the branch
address (to the current location in the dictionary) using addr and places
this branch address into the space left by >MARK .

?BRANCH flag -- c,83 "question-branch"
When used in the form: COMPILE ?BRANCH a conditional branch operation
is compiled. See BRANCE for further details. When executed, if flag is
false the branch is performed as with BRANCH . When flag is true
execution continues at the compilation address immediately following the
branch address.

BRANCH -- c,83
When used in the form: COMPILE BRANCE an unconditional branch operation
is compiled. A branch address must be compiled immediately following
this compilation address. The branch address is typically generated by
following BRANCH with <RESOLVE or >MARK .

CONTEXT -~ addr U,79
The address of a variable which determines the dictionary search order.

CURRERNT ~- addr u,78
The address of a variable specifying the vocabulary in which new word
definitions are appended.

F.16 Controlled Reference Words

The Controlled Reference Words are word definitions which, although not
required, cannot be present with a non-standard definition in the vocabulary
FORTHE of a Standard System. These words have present usage and/or are

F.vm

F.16. Controlled Reference Words 207

candidates for future standardization.

-—> - I.M,79 "next-block"
- (compiling)
Continue interpretation on the next sequential block. HMay be used within
a colon definition that crosses a block boundary.

.R n +n —- M, 83 “"dot-r"
n ie converted using BASE and then displayed right aligned in a field +n
characters wide. A leading minus gsign is displayed if n is negative. If
the number of characters required to display n is greater than +n, an
error condition exists. See: “number conversion"

2+ wi -- w2 83 "two-times"
w2 is the result of shifting wi left ome bit. A zero is shifted into the
vacated bit position.

BL -- 32 79 "b-1"
Leave the ASCII character value for space (decimal 32).

BLANK addr u -- 83
u bytes of memory beginning at addr are set to the ASCII character value
for space. No action is taken if u is zero.

c, 16b -- 83 "“c-comma'!
ALLOT one byte then store the least-significant 8 bits of 16b at
HERE 1- .

DUNMP addr u -- M,79

List the contents of u addresses starting at addr. Each line of values
may be preceded by the address of the first value.

EDITOR - 83
Execution replaces the first vocabulary in the search order with the
EDITOR vocabulary. See: VOCABULARY

EMPTY-BUFFERS -- M,79 “empty-buffers"
Unassign all block buffers. UPDATEed blocks are mot written to mass
storage. See: BLOCK

ERD flag —- c, 1,79
sys -- compiling
A synonym for UNTIL .

ERASE addr u -- 79
u bytes of memory beginning at addr are set to zero. No action is taken
if u is zero.

208 Appendix F. Forth-83 Standard

HEX - 79
Set the numeric input-output conversion base to sixteen.

IRTERPRET - 79
Begin text interpretation at the character indexed by the contents of >IN
relative to the block number contained in BLK , continuing until the
input stream is exhausted. If BLK contains 2ero, interpret characters
from the text input buffer. See: "input stream"

K -~ ¥ c,83
w is a copy of the index of the second outer loop. May only be used
within a nested DO-LOOP or DO-+LOOP in the form, for example:
Do ... DO ... DO ... K ... LOOP ... +LOOP ... LOGP

LIST u -- M,79
The contents of screen u are displayed. SCR is set to u. See: BLOCK

OCTAL - 83
Set the numeric input-output conversion base to eight.

OFFSET -- addr v,83
The address of a variable that contains the offset added to the block
number on the stack by BLOCK or BUFFER to determine the actual physical
block number.

QUERY - M,83
Characters are received and transferred into the memory area addressed by
TIB . The transfer texminates when either a "return" is received or the

number of characters transferred reaches the size of the area addressed
by TIB . The values of >IN and BLK are set to zero and the value of #TIB
is set to the value of SPAN . WORD may be used to accept text from this
buffer. See: EXPECT "input stream"

RECURSE - c,I,83
-- (compiling)
Compile the compilation address of the definition being compiled to cause
the definition to later be executed recursively.

SCR ~- addr u,79 "g-c-r"
The address of a variable containing the number of the screen most

recently LISTed.

SPQ -~ addr 79 “g-p-fetch"
addr is the address of the top of the stack before SP® was executed.

THRU ul u2 -- M,83
Load consecutively the blocks from ul through u2.

U.R u +n -- M,83 "“u-dot-r"

o

F.16. Controlled Reference Words

209

u is converted using the value of BASE and then displayed as an unsigned

number right aligned in a field +n characters wide.

If the number of

characters required to display u is greater than +n, an error condition

exists.

See:

"number conversion"

210

Appendix F. Forth-83 Standard

3

Appendix G

Glossary

The present glossary comprises two sections; the first deals with CAM-specific
words, while the second is devoted to general-purpose F83 words that have been
included in the generic Forth system (F83.EXE) upon which the CAM software is
built. The CAM section is fairly exhaustive: besides providing a handy reference
for the casual user, it lists all of the software primitives that may be of interest
to the sophisticated user. On the other hand, the F83 section only lists words
that are deemed notable for some reason. A number of these words are original
with the present implementation; a few F83 words have been renamed to avoid
confusion with hexadecimal constants;' some entries are of a tutorial nature, as a
complement to Chapter 5; finally, some words are listed just to make you aware
of the useful functions they provide.

Each entry of the glossary is headed by a Forth word—or by several words
that are closely related in meaning. The header entry contains several fields:

e The Forth word in question. This may be followed by ‘name’ or ‘filename’,
denoting that, besides any arguments on the stack, the word also expects a
character string (usually the name of a Forth word or of a file) to be read
from the input stream.

e Stack comment, in parentheses (cf. Section 5.11). No stack comment appears
if the word does not expect or leave anything on the stack. The dash in a
stack comment is dropped if the word does not leave anything on the stack.

e The compiler which was responsible for creating the word.

o The source file where the word is defined.

For example, the following header

! All single-digit hex numbers (0 through F) are defined as constants; no two-digit hex numbers
(i.e., 00 through FF) are used as names of words in the FORTH vocabulary.

211

212 Appendix G. Glossary

CENTERS (-- 2bits) : CAM-HOOD

means that CENTERS takes no arguments from the stack; returns a number
(all arguments or results named in stack comments are 16-bit quantities unless
otherwise specified) of which only the two least significant bits are relevant (the
others are all zeros); is defined by the COLON compiler; and is loaded into the
system from the source file CAM-HOOD.4TH . On the other hand, the header

INCLUDE filename : CAM-BUF

means that INCLUDE will look for a file name in the input stream (in this case,
the source-file text immediately following, since INCLUDE can be used only in the
interpretive mode), and will not affect the stack.

Among the abbreviations used within the stack comments, the most common
are n, for a generic number—often the number of a bit-plane; 4, for a double
number (two 16-bit values, with the 16 most significant bits on top of the stack);
f , for a logical flag (TRUE or FALSE); mask for a bit mask; len for a length
(e.g., number of bytes in a string); str for the address of a counted string (the
characters that make up the string are preceded by a count byte); addr , for a
16-bit address; seg , for an 8086 segment; offs for an offset. A mnemonic such
as row# means “row number” (i.e., which row), while #rows means “number of
rows” (i.e., how many rows).

Note that ‘variable’ generically refers to a quantity whose value may change
during the execution of a program. We consistently use the small-caps spelling
when we mean a Forth VARIABLE (i.e., a word that returns the address of its data
cell, as explained in Section 5.8).

Strictly speaking, CAM neighbor or pseudo-neighbor words such as NORTH
or VERT are compilation variables, and never know anything about the data
actually present on the CAM card (say, in the bit-planes or in the address registers).
However, in describing their function we use the convenient fiction that NORTH ,
for example, “returns the value of the the north-neighbor bit in plane 0 or 2;”
what we mean is, of course, that “the value returned by NORTH will be used to
compile a table entry which will be accessed during the simulation just when the
north-neighbor bit has that value” (cf. Section 9.3).

Many pairs of neighbor words (such as CENTER and CENTER’ , or HORZ and
VERT) are accompanied by a joint version, which is always a two-bit variable.
The least significant bit is the value of the first element of the pair, the next
bit that of the second element (in arithmetic notation, “the first bit plus twice
the second”). Thus, CENTERS=CENTER+2xCENTER’ , and HV= HORZ+2xVERT .
Similar considerations apply to the phase pseudo-neighbors (such as PHASES)
and to the words that control the phase pseudo-variables (such as <PHASES>),
as explained in Section 9.4.

Entries are in ASCII alphabetic order. Major neighborhood assignments begin

3

[

e

™

213

with N/ , minor assignments with &/ . Pseudo-variables which are mapped
into CAM shadow variables have the form <...> ; words such as >PLNO and
>BODY are read “to plane 0” and “to body.” Variables used as flags end with
a question mark. Routines whose actions depend on such flags have names that
start with a question mark. Other conventions used in names either are generic
Forth conventions (see Appendix F), or are explained along with the relevant
words.

214 Appendix G. Glossary

G.1 CAM words

#CAMS (-- n) : CAM-ID

Returns the number of CAMs that the software believes are installed. This number can be
changed using the word CANMS.

#IDLES (-- addr) VARIABLE CAM-STEP

This variable controls the rate at which steps occur when using the control-panel Run command
Speed is controlled by adjusting the number of IDLE (i.., display-only) steps inserted
between each active STEP.

&/CENTERS : CAM-BOOD

Minor neighborhood assignment for weak coupling between cAM-A and CAM-B. Makes the
neighbors 8CENTER and &CENTER’ available as part of the current neighborhood for either cam-
A, CAM-B, or both (see CAM-4). The corresponding joint version &CENTERS is of course also
available.

NOTE: Two consecutive minor assignments should not be used without an intervening major
assignment.

&/BV : CAM-HOOD

Minor neighborhood assignment. Makes &HORZ, &VERT, and &HV available. See also CAM-A and
&/CENTERS.

&/PHASES ¢+ CAM-ROOD
Minor neighbor assignment. Makes &PHASE, &PHASE’, and &PHASES available. See also CAM-A.

&/USER : CAM-HOOD

Minor neighborhood assignment. Connects address lines 10 and 11 of the current caM half to
input pins UA10, UA11 (for caM-a) or UB10, UBL1I1 (for caM-B) of the user connector. This is
the default after NEW-EXPERIMENT and after each major neighborhood assignment, if no explicit
minor assignment is made. Only CENTER, CENTER’, and CENTERS are always available. See the
description of == for an example of how to give a name to a user neighbor for use in rules. See
also CAM-A.

&CENTER (-- bit) == CAM-HOOD
&CENTER’
&CENTERS (-- 2bits) : CAM-ROOD

Neighbors made available by the minor neighborhood assignment &/CENTERS. The meaning of
&CENTER is “The center bit of the even-numbered plane in the other half of cAM.” Thus, in a
rule-component that is sent to CAM-A (see >PLNO and >PLN1) it returns a bit from plane 2.

Similarly, &CENTER’ refers to the odd-numbered plane. &CENTERS is the joint version of &CENTER
and kCENTER’

&HORZ (-- bit) == CAM-HOOD
&VERT
&RV (—- 2bits) : CAM-HOOD

.

G.1. CAM words 215

Pseudo-neighbors made available by the minor neighborhood assignment &/BV. The word £HORZ
returns the parity of the horizontal spatial position of the cell currently being updated, relative
to an origin set by <ORG-HV>,

Similarly, &VERT returns the vertical parity. &HV is the joint version of this pair.

&PEASE (-- bit) == CAM-HOOD
&PHASE’
&PHASES (-- 2bits) : CAM-HOOD

Pseudo-neighbors made available by the minor neighborhood assignment &/PHASES. During a
step, all cells see for &PHASE the value that was assigned to the Forth word <¢PHASE> when the
STEP command was issued.

Similarly, &PEASE’ gets its value from <&PHASE’>. &PHASES is the joint version of this pair.

&VERT see &HORZ
*BEAM (n) : CAM-HOOD

Toggle the visibility of beam n (0, 1, 2, 3 = blue, green, red, intensity). See COLOR-MASK.

+BEAM (n) : CAM-HOOD

Make beam n visible if it was temporarily turned off by *BEAM (0, 1, 2, 3 = blue, green, red,
intensity); this cannot reverse the effect of INVISIBLE. See COLOR-MASK.

-BUF>PDAT (pl.mask src.seg offs r0 cO #¥rows #byts row.incr) CODE CAM-IO

Low-level primitive—alternative entry point to BUF>PDAT. This routine sets the direction flag so
that string moves from memory run backwards. Since bytes are always written to CAM forwards,
this allows strings of bytes to be reversed. The offset given here should point to the last byte of
the buffer to be sent. See also ~PDAT>BUF.

-PDAT>BUF (pl.mask dest.seg offs r0 cO #rows #byts row.incr) CODE CAM-IO

Low-level primitive—alternative entry point to PDAT>BUF. Sets up the PC to perform string
moves backwards. Since cAM always reads the data it sends forwards, this results in bytes being
stored in reverse order. The offset should point to the last byte of the data buffer. See also
-BUF>PDAT. (This routine is called by S/S-PL).

-STEP# : CAM-STEP

Negates the value of the doubleword variable STEP-NUMBER; useful in conjunction with reversible
rules. More at STEP-NUMBER.

/-PL see NOT-PL

2ARG (-- 4) : CAM-KEYS

Used within control-panel key definitions (see ALIAS) to allow parameters to be passed to Forth
words attached to keys. Works exactly like ARG, but returns a double number on the stack.

<EPHASE> (=-- bit) =AAR CAM-HOOD
<EPHASE’>
<EPHASES> (-- 2bits)

<EPHASE>, <¢PHASE’>, and their joint version <€PEASES> are pseudo-variables distinct from but
similar in behavior to <PHASE> and <PHASE’>. Set using IS as in 1 IS <PEASES>.

<ORG-H> (-- bit) =AAR CAM-HOOD
<0RG-V>
<0RG-HV> (-- 2bits)

216 Appendix G. Glossary

The pseudo-variable <GRG-H> corresponds to the least significant bit of the horizontal value of
the space-grid origin. A 0 corresponds to an even position, a 1 to an odd one. The pseudo-
neighbor word BORZ, used during lookup table compilation, refers to this pseudo-variable. Set
using IS.

Similarly, <ORG-V> corresponds to vertical origin. <ORG-HV> is the joint version of this pair,
returning <ORG-B>+2x<0RG-V>. See HORZ and &HORZ. Set using IS, but see also EVEN-GRID and
ODD-GRID.

<PHASE> (-- bit) =AAR CAM-EOOD
<PHASE’>
<PEASES> (-- 2bits)

The <PBASE> pseudo-variable represents a phase bit present on the CAM card that can be con-
trolled at will from the pc. The pseudo-neighbor word PEASE, used during lookup table compi-
lation, refers to this pseudo-variable.

Similarly, <PHASE’> represents another phase bit. <PHASES> is the joint version of <PHASE> and
<PHASE’>. See PHASE’, <4PHASE>. Set using IS.

<TAB-A> (-- bit) =AAR CAM-HOOD
<TAB-B>
<TAB-AB> (-- 2bits)

The pseudo-variable <TAB-A> refers to a CaM bit that controls whether the regular (0) or the
auxiliary (1) tables of CAM-A are in use (see >PLEO, >AUX0). For example, 0 IS <TAB-A> sets
CAM-A to use normal tables.

Similarly for <TAB-B> and CAM-B.

<TAB-AB> is the joint version of this pair. A value of 0 means “use the regular tables for both
CAM-A and CAM-B;” a value of 3,“use the auxiliary tables for both” (bits 0 and 1 refer to cam-a
and CAM-B respectively). For example, 1 IS <TAB-AB> sets CAM-A to use the auxiliary tables
and CAM-B to use regular ones.

The words REG-TABS and AUX-TABS can also be used to set TAB-AB to 0 or 3, respectively.

=2ARG (addr) : CAM-KEYS

Used for passing parameters to routines attached to control panel keys. Works like =ARG, except
that it stores a double number.

= name (n) : CAM-ROOD

This word associates the given name to table address line n. It can be used to name the
“unnamed” neighbors provided by B/USER, &/USER, and N/MARG. Example: (in decimal)

NEV-EXPERIMENT CAM-A N/MOORE 10 == RAND1 11 == RAND2

would establish the Moore neighborhood on CAM-A, with two external neighbors named RAED1
and RAND2 (perhaps coming from an external random-number generator) attached to the UA10
and UA11 inputs of the user connector. Note that the default minor neighborhood &/USER was
automatically selected when a new major neighborhood was established.

=ARG (addr) : CAM-KEYS

~m
{

s

G.1. CAM words 217

Used for passing parameters to routines attached to control panel keys. Works like ARG, except
that it expects an address on the stack, and it takes any argument typed in and stores it as a
16-bit value in the location specified by addr (usually put on the stack by a VARIABLE). If no
argument was typed in, the value at addr is unchanged! This is convenient to use with keys
which have a default parameter: if no argument is given, the last argument previously given
remains in force.

>AUX0 (bit) >> CAM-HOOD
>AUX1
>AUX2
>AUX3
>AUXA (2bits) : CAM-HOOD
>AUXB

Column dispatcher for the auxiliary tables. >AUXn works just like >PLNn, but the result for the
neighborhood case being considered is sent to a table that will be used to update plane n only
if <TAB-A> is set appropriately.

>AUXA is the joint version of >AUX0 and >AUX1 (and works like >PLNA); >AUXB that of >AUX2 and
>AUX3.

>BLUE (bit) >> CAM-HOOD
>GREEN

>INTEN

>RED

Dispatchers for individual color-map columns. Low bit of value on the stack indicates whether
or not the named beam should be on or off for the case under consideration. See MAKE-CMAP
and >IRGB.

>GREEN >INTEN see >BLUE

>IRGB (4bits) : CAM-HOOD

Dispatcher for a whole color-map entry (see MAKE-CMAP). The four lower bits of the value on the
stack are used to determine the color to be associated with a given cell-state (see the table in
Section 9.6). See also IRGB.

>PLEO (bit) >> CAN-HOOD
>PLE1
>PLN2
>PLR3
>PLEA (2bits) : CAM-HOOD
>PLEB

Column dispatchers for the regular tables (see MAKE-TABLE). The low bit of the argument to
>PLNO is used as the value to be sent to plane 0 when the neighborhood configuration currently
under consideration is found.

Similarly for PLN1, PLN2, and PLK3. See also PLKO.

>PLHEA is the joint version of >PLNO and >PLN1. Least significant bit of argument is used for
plane 0, the next for plane 1—the rest is ignored. Similarly, >PLKB is the joint version of >PLN2
and >PLN3.

>RED see >BLUE.

?CAGE*PLNS s+ CAM-KEYS

218 Appendix G. Glossary

If CFLAG is set, exchange the contents of the cage buffer (see CBUF-SEG and CAGE-AREA) with
the active region of CAM’s planes. Since most plane operations work on this active region, this
causes subsequent plane operations to act on the cage, with the area swapped into the cage-buffer
playing the role of the buffer. Execute this a second time to “turn ofl” the cage.

In performing the exchange of plane and buffer data, this routine uses as an intermediate buffer
the second half of the 8K temporary buffer at TEMP-SEG, whose contents is thus destroyed.

AAR (— offset) EQU CAM-IO

Offset of CAM’s “auxiliary address™ register within each cam’s shadow segment. See <ORG-H>,
<PBASES>, <¢PHASES>, and C!CANM.

ALIAS name : CAM-KEYS

Used to attach a Forth routine to a key of the control panel. User routines are normally attached
to Alt- keys; all of the alphabetic Alt- keys plus [A1t-F1] . .[A1t-F10] are available for use by
the user. ALIAS attaches the named key to the most recently defined Forth word. For example,

: Example
." This is an example" ; ALIAS E

would attach the Forth word “Example” to the key. If this example were compiled,
subsequently pressing would cause the letter E to appear, then the word “Example,” and
finally the word would execute, producing its message “This is an example.”

Note that you should use upper-case letter names, and upper-case F1-F10 for the key names
following ALIAS. All user-defined keys automatically appear in the ALTERNATE menu of the
control panel.

For those who are curious, ALIAS is implemented by means of the Forth VOCABULARY mechanism.
Each time ALIAS is executed, it puts an entry in the current alias vocabulary (see ALIASES and
ORDER). When an Alt- key is pressed, the key name is searched for as a Forth word in this
vocabulary, using FIND; if found, it is executed. All the rest of the control-panel keys are
attached in a similar manner, using other ALTAS vocabularies, such as GENERAL, PLANE-QOPS, etc.

ALIASES : CAM-KEYS

You probably don’t want to use this word—it sets the aliases vocabulary to be whatever is the
context vocabulary when ALIASES is executed. The CAM program puts key definitions into alias
vocabularies: the vocabulary that is used when the system is first booted is the ALTERNATE
vocabulary. All user definitions in this ALTERNATE vocabulary are invoked by Alt- keys—all
reserved for user definitions. If ALIASES is used to change the aliases vocabulary, system keys
may become redefined and hence unavailable; and non-standard keys will not all be automatically
put into the ALTERNATE submenu. See also ALIAS and ORDER.

ALPBA (-- bit) == CAM-HOOD
ALPHA’

BETA

BETA’

ALPEAS (-- 2bits) ¢ CAM-HOOD
BETAS

The four color-map inputs. ALPHA usually returns the state of plane 0 and ALPHA’ that of plane
1—but see SHOW-FUNCTION. Similarly, BETA and BETA’ refer to planes 2 and 3. Used in color-map
generation (see MAKE-CMAP).

ALPHAS is the joint version of ALPHA and ALPEA’. Similarly for BETAS.

=™

G.1. CAM words 219

ALTERNATE VOCABULARY CAM-KEYS
This is the VOCABULARY in which user-defined Alt- keys are put.

AND>PL (n) : CAM-BUF
OR>PL

XOR>PL

P*BUF

PL>PB

PB>PL

PLS>PBS (--)

PBS>PLS

AHD>PL performs the logical AND function between plane n and the corresponding plane buffer;
the result is stored back in the plane. Similarly for OR>PL and XOR>PL.
P#BUF exchanges the plane with its buffer.

PL>PB copies the plane to its buffer; vice versa for PB>PL. PLS>PBS and PBS>PLS (with no
arguments on the stack) do the copying for all four bit-planes.

See also PERMUTE and AREA

All the above operations between planes and buffers affect only the active region of a plane and
the associated buffer (see NOT-PL).

ANDS see STORES
AREA (seg h w) : CAM-BUF

This word is used to set the values of the height and width of the active region of the bit-planes,
and to associate a buffer-segment with this region. Operations on planes, such as /-PL, §OT-PL,
RED>PL, etc. (but not FILE>PL and other disk I/0 words) operate only on the active region of
the bit-planes. Similarly, operations between planes and buffers treat the planes as if they were
only the size of their active regions, and use a correspondingly small contiguous area of buffers
starting at the beginning of the given segment.

Two special cases which call AREA are WHOLE-AREA and CAGE-AREA. The former sets the area to
be the full screen, and the associated buffer-segment to be the PBUF-SEG—this is the default
situation which is generally in effect. CAGE-AREA uses the CBUF-SEG and height and width
taken from variables C-HEIGHT and C-WIDTH. The active region’s height, width, and associated
segment are available to any routine: they are supplied by CONSTANTs R/8, C/8 and A-SEG,
which respectively return the height and width in units of eight cell positions, and the associated
segment.

As an example, if you wanted to define 4 extra plane buffers and copy the planes to them, you
could use (numbers are in hexadecimal)

8000 SEGMENT EXTRA-BUFFERS
EXTRA-BUFFERS 20 20 AREA
PLS>PBS

Note that the height and the width of the full screen (in units of eight-cell positions) are both
20 (hex) (or 32 in decimal). As a further example,

TEMP-SEG 4 6 AREA
0 PL>PB 2 PL>PB

220 Appendix G. Glossary

would transfer data from a 32-high, 48-wide area in the center of the screen to two areas of
TEMP-SEG. The data from plane 0 will go to offset 0, the data from plane 2 will go to offset 384
and following locations (4x6x8 bytes of buffer alloted per plane).

ARG (—— n) : CAM-KEYS

Used within the definition of a control-panel key (see ALIAS) to take a numerical parameter from
previous digit keystrokes. If an argument was typed at the control-panel prompt immediately
before ARG is executed, this argument is returned by ARG as a 16-bit value on the stack. If there
was no argument, a value of 0 is put on the stack. See also 2ARG, ARG?, =ARG, and =2ARG.

ARG? (-- 1) : CAM-KEYS

Can be used by routines which are attached to control-panel keys (see ALIAS). It returns a logical
flag to indicate whether an argument was typed for this key (see ARG).

AUX-TABS : CAM-HOOD

Used to select the auxiliary tables for both caM-A and caM-B. This is useful in a step-cycle—see
also REG-TABS, <TAB-A>,and MAKE-CYCLE.

AUX0 (-- bit) =NEW CAM-HOOD
AUX1
AUX2
AUX3
AUXA (-- 2bits) : CAM-HOOD
AUXB

AUXO is a table compilation variable; it returns the value that will be sent to the AUX0 column
of the current entry in the lookup table. Similarly for AUX1 etc. See >AUXO and >PLNO.

AUZXA is the joint version of AUXO and AUX11 (=AUX0+42xAUX1); similarly for AUXB.

B!CELL (bit r ¢ n) : CAM-IO

Stores the bit contained in the first argument to row r, column ¢ of bit-plane n. Wrap-around
occurs if ¥ or ¢ have values that exceed 255.

B=A : CAM-HOOD

Copy the current rule and neighborhood assignment used by CAM-A into CAM-B.

BOCELL (r ¢ n -- bit) : CAM-ID

Returns on the stack the value of the bit in row r, column ¢ of bit-plane n. Wrap-around occurs
if ¥ or c have values that exceed 255.

BARE : CAM-HOOD
MAKE-TABLE BARE will set the rule for plane 1 to return zeros for all cases.
BEGIN-MACROS ¢ CAM-INT

Begin defining macros—this allots some space for the machine code, and puts subsequent Forth
definitions after this space, until USE~MACROS is executed. See also FORGET-MACROS, which erases
all macros, leaving only the code generated using them.

BEGIN-SERVICE-STEPS : CAM-STEP

G.1. CAM words 221

Used when cAM must perform “service” steps extraneous to the simulation proper; for instance,
shifting of bit-planes is usually done with service steps (see SEND-SEIFTS). Switches all caMs to
begin using an extra set of shadow areas, and saves all tables for all cams.

Initially the extra shadow areas are a copy of the normal shadows, so that color ma‘ps, etc.,
start off the same. You may change tables, neighborhoods, and phases; when you are done,
END-SERVICE-STEPS will restore CAM’s previous state. All tables, event counts, neighborhoods,
etc. (everything but the contents of the planes) will be back to what they were before the service
steps.

BETA BETA’ BETAS see ALPHA

BIT-GET (bit# n -- bit) CODE CANM-IO0
Returns the specified bit of the 16-bit quantity n.
BIT-PUT (bit bit# n -- n’) CODE CANM-10

Store a bit into an indicated position of the 16-bit quantity n. The modified quantity is returned
on the stack.

BLACK : CANM-HOOD

Use during color-map generation (see MAKE-CHAP). Sets the result for all colors to be off, so that
one does not have to explicitly program any colors that are not used.

BUF-AND (s.seg offs d.seg offs #byts) CODE CAM-BUF
BUF-O0R
BUF-X0R

BUF-AND is the logical AND of the source segment:offset with the destination. Corresponding
bytes are ANDed, and the results are stored back into the destination. Similarly for BUF-OR, etc.

BUF>MAP : CAM-HOOD
Copies the color-map buffer into the color map—see MAP>BUF.

BUF>PDAT (pl.msk src.seg offs r0 cO #rows #byts row.incr) CODE CAN-IO

Low-level primitive for all transfers of data from PC memory to caM. The plane-mask argument
indicates which planes the data will be written to simultaneously (a value of 3 indicates planes
0 and 1, for example). The source segment and offset point to the start of the data, r0 and c0
give the upper left corner on the screen of the region to be written—r0 is the row, and 0 is the
column divided by 4 (since columns use nybble addressing). The number of rows and bytes to
be written on each row are given, and then the row increment, i.e., the number of caM rows to
skip at the end of each row before writing the next one.

See also -BUF>PDAT, PB>PL, and TEMP>PL.
BUF>TAB : CAM-BUF

Used to copy a precompiled table from a buffer in the PC’s memory to caM’s lookup tables. All
8 columns (PLNO-PLE3 and AUX0-AUX3) are copied. The buffer starts at TBUF-SEG:0000. Cf.
TAB>BUF and BUF>TDAT.

BUF>TDAT (buf.seg buf.offs first.page #pages) CODE CAM-IO

Low-level primitive used for all writing of table data from PCc to caM. Complete tables are 10
(hex) pages long, where each page is 100 (hex) bytes. A source segment and offset are given,
and the first page of the destination is indicated (usually 0). See also TDAT>BUF, BUF>TAB, and
MAKE-TABLE.

222 Appendix G. Glossary

BUTTONS (-- 3bits) : CAM-EDIT

Returns the value (0-7) of the mouse buttons’ status. The high, mid, and low bits correspond
to the left, middle, and right buttons. 0 means button pressed, 1 means button up.

C!CAM (val loc#) ¢ CAK-IO

Used to talk directly to caM shadows and hardware. Can be used in hardware debugging (naive
users should not need to use this). Normally writes val to shadow-register loc#, which is sent
to caM during its next interrupt. Used in conjuction with HARD or with CAM data areas (PDAT
or TDAT) it writes directly to CAM. See also CCR, AAR, TAA, TBA, PCA, and PRA.

CocAM (loc# -- val) : CAM-I0

Used to talk directly to caM shadows and hardware. Can be used in hardware debugging (naive
users should not need to use this). Normally reads val from shadow-register loc#, which was
sent to cAM during its last interrrupt. Used in conjuction with HARD or with CAM data areas
(PDAT or TDAT) it reads directly from caM. See also C!CAN.

CAGE-AREA . : CAM-BUF
See AREA.
CAM : CANM-10

Select CAM (rather than the PC) as the video source seen on the display; ignored if you have
separate monitors for cAM (or caMs) and the PC. See DISPLAYS and PC.

CAM# (-- addr) VARIABLE CAM-I0

This is the number of the currently selected cam (ranging from 0 to 7, where 0 is the master
CcAM and 1 thru 7 are slaves). Most operations only affect the currently selected caM. See
FOR-ALL-CAMS and NEXT-CAM for a discussion of how to change information for all cams.

CANM-A : CAM-HOOD
CAHM-B
CAM-AB

CAM-A selects CAM-A as the object of future neighborhood assignments. Similarly for CAM-B.

CAM-AB selects both halves of the machine as the target of neighborhood assignments; this is the
default situation, in effect after executing NEW-EXPERIMENT.

CAM-BASE (-- addr) VARIABLE CAM-INT

This variable contains the base segment address used by CAM-INIT to set up all addressing of
CAM data. Its default value is DC0O. This indicates that up to eight CAMs occupy consecutive
2K blocks of memory beginning at address DC0O00, with the master caM (number 0) last and
the seventh slave first. This is the variable that must be changed if the addressing jumpers
on CaMs are changed, to remap CaMs into another 16K block of memory. To use a block
beginning at D0000, for example, you could type D000 IS CAM-BASE and then save the system
using SAVE-SYSTENM.

CAM-IRQ# (-- addr) VARIABLE CAM-IKT

This variable is used by CAM-INIT to set up CAM’s vertical-blank interrupt. The default value is
2 (caM will use 1RQ-2). This value must be changed if the IRQ jumper on CAM is changed. Note
that only the jumper on caM 0 (the master) matters (none of the slaves will cause interrrupts).
See also CAM-BASE.

G.1. CAM words 223

CAM-PTR (-- addr) VARIABLE CANM-IO
Pointer to the selected cAM. See CAM-SELECT.
CAM-RESUME (-- addr) EQU CAM-INT

This constant points to the beginning of a machine-language subroutine which causes operation
of the caM interrupt service routines to resume after being suspended by the CAM-SUSPEND
routine. This is used to prevent the interrupt from interfering with foreground machine-code
routines which must temporarily take control of CAM machine registers.

CAM-SEG (-- segment) : CANM-IO

Returns on the stack the segment value of selected cAM’s memory mapped area. This is used
to access CAM’s registers as memory locations.

CAN-SELECT (cam#) ¢ CANM-IO0

Select the active CAM, to which commands are directed. After RESET-CAMS, CAM 0 (the master)
will be the selected one. To perform an operation on all installed cAMs, see FOR-ALL-CAMS. Note
that the command STEP is always directed to all CAMs, no matter which of them is currently
selected.

See also SHOW-CAM, CAM, and PC.

CAM-SUSPEND (-- addr) EQU CAM-INT

Suspend CAM operation—see CAM-RESUME.

CAMOUT (-- mask) EQU CAM-IO

“CAM output selection” bit of caM’s configuration and control register. See SET-CCR.

CAMS (#cams) : CAM-STEP

Used to tell the system how many CAMs are present. Non-existent caAMs will be ignored as far
as event detection is concerned, and shadows will not be copied to them (this allows more time
during the cAM interrupt for other things—see R/FLY for example). The number of caMs is
also used by FOR-ALL-CANMS, which you can use to perform operations on all caMs. If you set
this number to more cAMs than are actually present, the software will service these non-existent
CAMs exactly as if they were there—you can do this to try out programs that are intended to
use more CAMs than you actually have.

If there are more than four CAMs present in the system, the vertical blank interval will be
increased by 8 scan-lines, to give the interrupt more time. This interval can be set to this longer
value manually by executing DPYNRM CLR-CCR. The default length of this interval is determined
by the state of the VARIABLE LONG?, and is restored whenever you execute BEW-EXPERIMENT or
RESET-CAMS.

CBUF-SEG (-- segment) SEGMENT CAM-BUF
This is the 2K segment used for storing the cage’s contents. See also CAGE-AREA.

CCR (—- offset) EQU CANM-IO

Offset of the “configuration control” register within each caM’s shadow segment. See SET-CCR
and C!CAM.

224 Appendix G. Glossary

CCW CCW’ CCWS see CW
CCW-PL see NOT-PL

CENTER (-- bit) == CAM-BOOD
CENTER’
CEETERS (-- 2bits) : CAM-HOOD

The neighbor CENTER (the current center of attention) is available as part of all neighborhoods.
Like all other neighbor names, this is a compilation variable which is set by MAKE-TABLE at the
beginning of each of the 4096 cases that must be considered to generate a complete table. The
rule is a Forth word that is a function of these neighbor names, and MAKE-TABLE evaluates it for
all possible values of the neighbors.

For a rule-component that is sent to CAM-A (see >PL¥0, >AUX0) CENTER corresponds to the center
cell bit of plane 0. Exactly the same tables can be sent to CAM-B (see >PLE2, >AUX2), in which
case CENTER corresponds to the center cell of plane 2. For example,

: ID-02 CENTER DUP >PLNO >PLE2 ;

would send the identity rule to planes 0 and 2. In fact, as long as CAM-A and CAM-B have
the same neighborhood, it is always possible to just duplicate the rule result and send it to
corresponding subtables on the two halves of the machine.

Similarly for CENTER’, referring to planes 1 or 3.

The “plural” version CENTERS is the joint form of CERTER and CENTER’, and returns the value
CENTER4-2xCEHTER’.

CLOSE-DATA : CAM-BUF

Close the currently active data file, and write all changes to disk. (If the file isn’t closed, some
changes may not get written). Each open data file must be selected separately and then :losed.
See OPEN-DATA.

CLR-CCR (mask) CODE CAM-IO

Works like SET-CCR, but clears the indicated bits to zero, leaving the rest unchanged. Bits to
be cleared are indicated by 1s in the mask.

CMAP (~-- offset)) EQU CAM-IO0

Offset within each caM’s shadow segment of the beginning of its color map. See MAKE-CMAP,
BUF>MAP, MAP>BUF, and C!CAM.

COL (-- 2bits) : CAK-HOOD

Neighbor in the H/XPAND n-hood. Current cell’s column position on the screen, mod 4. See
<ORG-HV> and CENTER.

COLOR-MASK (-- addr) VARIABLE CAM-HOOD

VARIABLE used by MAKE-CMAP to generate color maps that have some of the beams temporarily
turned off. The words *BEAM and +BEAM act on the low byte of this mask; the word ISVISIBLE
acts on the high byte. During color-map generation, the low and the high bytes of this mask are
ORed together, and bits 0-3 of the result are used as the final mask. Any 0 in the mask leaves
the corresponding beam (0, 1, 2, 3 = blue, green, red, intensity) unaffected, any 1 turns the
“corresponding beam off. Color maps are stored in duplicate—an active map and a copy. Beams
are turned off only in the active map, so that they can later be turned back on by referring to
the copy.

=

G.1. CAM words 225

After NEW-EXPERIMENT, the COLOR-MASK is ofl. If any of the beams have been turned off, all
color maps will be generated with the appropriate beams turned off in the active map. To cause
subsequent color maps to be generated with all beams turned on, you can use COLOR-MASK OFF.

cW (-- bit) == CAM-HOOD
cCw

OPP

cw’

ccw’

OPP’

CWSs (-- 2bits) : CAM-BOOD
CCus

OPPS

Neighbors made available by the H/MARG, N/MARG~HV and §/MARG-PE major neighborhood assign-
ments. CW returns on the stack the value, for the case under consideration, of the clockwise cell
in the Margolus neighborhood (plane 0 for caM-A, 2 for CAM-B); CCW, of the counter-clockwise
neighbor; OPP, of the diagonally opposite. (Cf. CENTER and MAKE-TABLE).

Similarly for CW’, CCW’, and OPP’—all referring to planes 1 or 3.

CWS, etc are joint versions.

CW~PL see NOT-PL
DATA-ADDR (n -- addr) : CAM-BUF

Returns the address in memory where the next n bytes of data from the active data-file (see
OPEN-DATA) can be found, and advances the data pointer for that file by n. Uses Forth block-1/O
routines, and so data must be accessed using a record size that divides evenly into blocks of size
1K (e.g., n could be 8 each time). See also OPEN-DATA, CLOSE-DATA, GET-DATA, PUT-DATA, and
REWIND. The active data pointer is kept in the double-number VARIABLE DATA~-PTR—this can be
manipulated directly to perform random access.

DATA-PTR (-- addr) 2VARIABLE CAM-BUF

This is the data pointer used by the OPEN-DATA command. It is a double-number VARIABLE
which points to the next byte of the file to be retrieved or written. It is auto incremented as you
read or write data; if you modify it directly, be sure to give it an even value, so that word reads
and writes won’t straddle two blocks. See also DATA-ADDR, REWIND, GET-DATA and PUT-DATA.

DIAG (-~ mask) EQU CAM-IO
Diagnostic bit within CAM’s step status register—see CQCAM.

DISPLAY-CONTROL VOCABULARY CAM-KEYS
VOCABULARY containing the display control ALIAS keys.

DISPLAYS (#displays) : CAM-STEP

Initialize the hardware for the selected number of displays. If only a single display is available,
it will be shared between CAM and the Pc. If two displays are available, one is assumed to be
dedicated to the Pc and the other is shared among the caMs. If three or more displays are
available, the PC and each CAM are treated as if they each have their own display (see DISPLAY).
In this case, the control panel will never change the setting of the display-multiplexing hardware,
though the user is allowed to. See CAMOUT and Appendix A.

Dos... : CAM-KEYS

226 Appendix G. Glossary

Prints the message (type ‘exit’ to return) and then executes COM to invoke a copy of the
DOS command interpreter.

DOT (xow col) : CAM-EDIT

Changes the bit at the indicated row and column without turning off the display. Only changes
one bit per 60-th of a second—you probably want to use B!CELL and B8CELL to draw lines. The
plane number is selected by changing the variable DOT-PLH.

DOT-PLE (-- addr) VARIABLE CAM-EDIT

This VARIABLE contains the current plane number used by DOT, and is used to display the
dot-cursor by the caM control panel program.

DOTS,SHIFTS VOCABULARY CAM-KEYS
VOCABULARY containing the graphic editing and shift-key ALIAS definitions.

DPYLIN (-- mask) EQU CAM-IO
“Display line” bit of step status register—see COCAN.

DPYHRM (-- mask) EQU CAM-IO
“Display normal” bit of CAM’s configuration control register—see SET-CCR and C!CAM.
DPYRQ (-- mask) EQU CAM-IO

“Display request” bit of cAM’s configuration and control register—see SET-CCR and C!CAN.
EAST EAST’ EASTS see NORTH

ECHO + CAM-HOOD
MAKE-TABLE ECHO makes the rule for plane 1 be “copy the CENTER of plane 0.”

ECHT-1 (-- offset) EQU CAM-IO0
ECHT-2

See EVENT-COUNT.

ECNT-TOT (—- offset) EQU CAM-IO
Global variable in the STEP-SEG. See EVENT-TOT.

EDITING,RUNNING VOCABULARY CAM-KEYS

VOCABULARY containing the ALIAS key definitions for editing screens, loading files, and running
experiments.

END-SERVICE~STEPS : CAM-STEP
See BEGIE-SERVICE-STEPS.
EQU name (value) : CAM-INT

Makes name a constant and sets it to the given value.
EVER-GRID : CAM-HOOD

Sets both the horizontal and the vertical grid origin position to an even cell. This word is
equivalent to 0 IS <DRG-HV> .

EVENT (-- mask) EQU CAM-IO
“Event detected” bit in CAM’s step status register—sece EVENT-COUNT, EVENT-TOT and CQCAM.

i

3

G.1. CAM words 227

EVENT-COUNT (-- d) CODE CAM-STEP

The number of occurrences of an event, returned as a double number. Correct usage is to use
NEW-EVERTS to reset event pointers, and then run two steps before calling EVENT-COUNT. If you
only start one step and then immediately call EVENT-COUNT, the step you started won’t yet have
finished, and so there won’t yet be anything to count. (This is a problem of pipelining your
computation to run at full speed—you must always set up the info for the next step before the
current step has finished.)

If EVENT-COUNT is executed and no counts have accumulated since NEW-EVENTS or EVENT-COUNT
was last executed, an error message will be printed and execution will be aborted. If either one
or two counts have accumulated, all is well (the earlier of two counts will be returned the first
time EVENT-COUNT is called, the later the next time it is called); these two counts are kept in
ECHT-1, ECHT-2. If more than two counts have accumulated, again an error is signaled.

The one-byte variable EVENT-LEN in the STEP-SEG keeps track of the number of counts that
have been accumulated. If you wish to just read an event count without keeping track of exactly
which step it is associated with, you can set this variable to one, as in

1 STEP-SEG EVENT-LEN C!'L EVENT-COUNT

which will read the most recent count. A word which reads the count at the end of one step,
and starts a new step could be defined as

: READ-AND-STEP (-- d)
STEP EVENT-COUNT ;

Although this looks like we are stepping and then reading, the count read here by EVENT-COUNT
will be the one produced by an earlier step: we are just starting the new step before we look at
what we read, so as not to slow things down. A loop which runs 100 steps and examines all the
counts could look like this

: ANALYZE-EVENTS
HEW-EVENTS STEP 69 0 DO
READ-AND-STEP ANALYZE LOOP
IDLE EVENT-COUNT ANALYZE ;

Here ANALYZE is some user-defined word which takes a double number on the stack and does
something with it. The IDLE is there to wait for the last active step to finish—we could instead
have made the loop 100 long, and not read the extra count at the end.

See OPEN-DATA if you wish to accumulate data on disk; see also EVENT-TOT and EVENT-STOP.

EVENT-HANDLER DEFER CAM-IO

This is a DEFERred word that will be called by WAIT-FOR-PEND (and thus indirectly by STEP and
IDLE) if CAM stepping has been stopped because an event of a particular type has occurred (see
EVENT-MASK and EVENT-TYPE). Initially this word is set by REW-EXPERIMEKT to be a NOOP (null
operation). By setting this word to use a definition of your own, you can take special action
when an event of interest has occured. After EVERT-HANDLER has executed, CAM stepping will
resume. See EVENT-STOP.

EVENT-LEN (-- offset) EQU CAM-INT

228 Appendix G. Glossary

Offset to the one byte variable in the STEP~SEG which keeps track of how many counts have
accumulated since the last execution of NEW-EXPERIMERT, HEW-EVENTS, or EVENT-COUNT. This
variable is incremented each time a new count becomes available, and decremented whenever
EVENT-COUNT reads a count—it allows EVENT-COUNT to maintain a two-item event stack in order
to ensure that no counts are lost inadvertently.

EVENT-MASK (-- offset) EQU CAM-INT

This is a byte in the STEP-SEG which controls which CAM’s events can cause stepping to stop.

The least significant bit corresponds to caM 0 (the master). The most significant bit corresponds
to CAM 7 (the seventh slave). A value of 1 indicates that event detection for the correspond-
ing CAM during the next step may cause stepping to stop (see EVENT-TYPE, EVENT-STOP, and
EVENT-HANDLER).

EVENT-STOP (-- offset) EQU CAM-INT

Because of the overlapping of step scheduling and event-count reading that is necessary to run
at full speed, events that occur during one step will not be detected using EVERT-COUNT until
after a new step has begun. This means that the state of cAM when the event happened is no
longer available. If one desires to examine the states of CAMs in which certain events happened,
a stop-on-event facility is available which doesn’t slow cAM down.

To use this, you should first program the color map and-auxiliary tables so that you detect the
event of interest during the step in which the configuration of interest is being constructed by
the updating (see SHOW-FUNCTION). The variables EVENT-MASK and EVERT-TYPE allow you to
control which sorts of events (on up to eight caMs simultaneously) will request that stepping
be interrupted. The variable EVENT-STOP (within the STEP-SEG) indicates which CAM or caM’s
requested stepping to be interrupted (bit 0 corresponds to the master CAM, etc.). As long as
the EVENT-STOP byte is non-zero, stepping will be inhibited: the word WAIT-FOR-PEXD, which is
called by STEP and IDLE, examines this byte. If it is non-zero, a DEFERred word EVENT-HANDLER
is executed, and then EVENT-STOP is cleared. The normal definition of EVERT~HANDLER is a null
operation—by having it execute your own routine you can have whatever action you wish taken
whenever an event of interest occurs.

EVENT-TOT (-- quad-number) : CAM-STEP

This returns the cumulative count (ECHT-TOT) of all events that have occurred since the last
time NEW-EXPERIMENT or NEW~EVENTS was called. Before reading the count, it waits for the
completion of up to two steps, namely, (a) a step that may currently be in progress and/or (b)
one to whose execution the step-scheduling mechanism is irrevocably committed (i.e., one for
which the STEP command has already been issued).

The total returned on the stack is a quadruple number—the high-order double number is on the
top of the stack. Arithmetic operators for manipulating quad numbers can be made available
by IHCLUDEing the file QUAD.4TH. See also EVENT-COUNT.

EVENT-TYPE (-- offset) EQU CAM-INT

This is a byte in the STEP-SEG segment which, together with EVENT-MASK, controls which cam’s
events can cause stepping to stop.

The least significant bit corresponds to cAM 0 (the master). The most significant bit corresponds
to caM 7 (the seventh slave). A value of 0 or 1 indicates what type of-condition (event or
non-event) for the corresponding cAM during the next step may cause stepping to stop (see
EVENT-TYPE and EVENT-HANDLER).

G.1. CAM words 229

EXEC (str) CODE PC

Given a pointer to a counted string (which must be immediately followed by a carriage return
character, not counted as part of the string), EXEC will try to execute it as a DOS command. A
blank string invokes the DOS command interpreter (from which you return to Forth by typing
exit). Command lines should look like

/c copy a:example b:

(note the extra ‘/c’ at the beginning). After the DOS command, execution proceeds with the
next instruction after EXEC, with the stack as it was before the call (except, of course, that str
has been removed). See also >D0S and COM.

FILE>IMAGE (n #planes) : CAM-BUF

Reads an image from disk to caM (used with OPEN-PATTERY). Plane n is read from the n-th 8K
record in the file, then plane n+1 from record n+1, etc., for the specified number of planes. If
the file is too short it is wrapped around. Thus, for example, if a 2-record file is read to 4 planes,
the 2 records are used for the first two planes, and then again for the second two. As a second
example, if a single plane starting at 2 is read from a 32K file, then only record 2 (starting the
count from 0) is read and it goes into plane 2. See also IMAGE>FILE.

FILE>PL (n) : CAM-BUF

Used with OPEN-PATTERN. Copy data from the pattern file into the selected caM plane. The
file is treated as divided into 8K-byte records (this is the size of one bit-plane). The record n is
copied to the plane n. File is wrapped around if n is too large. See also PL>FILE.

FILE>TAB : CAM-BUF

Load entire lookup tables from current TAB file. Use with OPEE-TABLE.
FIRISE-CYCLE ¢ CAM-STEP

This word is used for cleanly changing from one run cycle to another (see MAKE-CYCLE). The
current run cycle is run until the end of the Forth word currently attached as the cycle is
encountered. Then, instead of looping back to the beginning as usually happens with a step
cycle, execution of the cycle ends and you exit from FIFISE-CYCLE. You don’t have to execute
this word before executing MAKE-CYCLE on a new word—usually there is no reason to.

FOR-ALL-CAMS ¢ CAM-STEP

Begins a DO loop in which the index I ranges over the numbers of all installed caMs. During
each iteration, the I-th caM is selected. The end of the loop is indicated by the word NEXT-CAN.
As with ordinary DO loops, a FOR-ALL-CAMS loop can only be used inside of a colon definition.

FORGET-MACROS : CAM-INT

Forget all Forth words defined since BEGIN-MACROS was executed, but leave the code generated
in the dictionary.

FREEZE ¢ CAM-HOOD
MAKE-TABLE FREEZE makes the rule for plane 1 be the identity rule—no other planes are affected.
GENERAL VOCABULARY CAM-KEYS

Vocabulary containing general-purpose key ALTAS’es, such as numbers and a key to exit to Forth.

230 Appendix G. Glossary
GET-DATA (-- n) : CAM-BUF
Used with OPEN-DATA . Get the next sequential 16-bit quantity from the current data file.

GET-TIME (-~ d) CODE CAM-LOAD

Returns time of day as a double number on the stack. The top number contains the hours (high
byte) and minutes (low byte); the other number contains seconds (high byte) and 1/100-th
seconds (low byte).

GO : CAM-KEYS
Resume stepping. See STOP.

GOTO-K : CAM-KEYS

Go to the control-panel program. Exits from whatever operation was going on (such as loading)
and starts up the control panel.

H1 (-- bit) == CAH-HOOD

Pseudo-neighbor available as part of the N/XPAND neighborhood. Returns the second least sig-
nificant bit of the horizontal position of the center cell. See also HORZ and COL.

HALF CORSTANT CAK-KEYS

Returns the constant value 32,762 (8000 in hex), which is half the number of cells on the cam
screen. :

HARD (loc -~ hard-loc) : : CAM-IO
Used in conjuction with COQCAM and C!CAM to talk directly to hardware registers. For example,

5 AAR CICAM

would write 5 to the shadow variable associated with the AAR register (which will be sent to
CAM when it interrupts next), while

& AAR HARD C!CAM

would write directly to the cAM hardware AAR register of the currently selected cam.

BGLUE (-- mask) EQU CAM-IO

“Horizontal glue” bit of configuration control register. Set it for all cAM’s that are to be glued
horizontally—they will then make use of the signals coming into their horizontal glue connectors.
Vertical gluing works in a similar fashion. See VGLUE, SET-CCR, and C!CANM.

BHASK (-- addr) VARIABLE CAM-STEP

Hold mask. The four low-order bits of this variable constitute a mask that is used by the cam
control panel program when it calls SEND-SHIFTS in response to the arrow keys. Normally,
tables for four different shifts are sent for each bit-plane; if a bit of HMASK is set, an identity rule
(no change) is sent as the table for the corresponding plane. Thus the indicated planes are held
fixed, while the rest of the planes are free to shift.

HORZ (-- bit) == CAM-HOOD
VERT
BV (-- 2bits) : CAM-EOOD

G.1. CAM words 231

Pseudo-neighbors made available by the §/MARG-EV major neighborhood assignment. HORZ
returns the horizontal parity of the position of the cell currently being updated, relative to an
origin set by <ORG-HV>. VERT does the same for the vertical position, and BV returns the joint
value HORZ+2x VERT. .

HRUN (-- mask) EQU CAM-IO
“Horizontal run” bit of the step status register. See SSR.

HV see HORZ
IDLE : CAM-STEP

Execute one idle step on CAM, during which display occurs but there is no updating of cell states.
All shadow data is transferred, just as for an active step (color maps, neighborhood assignment,
reading or writing planes during the vertical blank interval, etc); event-counts and step-counts
are not affected. IDLE steps can be (and are) used for controling caM’s speed. When IDLE is
used inside of a run cycle, it causes an exit just as STEP does. See also IDLES.

IDLES (n) : CAM-STEP

Execute IDLE n times.
IMAGE>FILE (n #planes) : CAM-BUF

Used with OPEN-PATTERN. Saves the image as consecutive 8K records, with no special header
information. See FILE>IMAGE.

IMOVE (src.seg offs dest.seg offs #byts) CODE CAM-BUF

The same as LMOVE, but no interrupts are allowed to occur during the move—the block of data
is moved as an indivisible unit.

INCLUDE name ¢ CAM-BUF

Used to include the entire contents of another file as if it appeared at the indicated point.
Used, for example, with AUTOCORR.4TH when you want to run an autocorrelation experiment,
and with D0S2.4TH if you want to use the DOS2 file interface. (Also QUAD.4TE to load the
quadruple-precision arithmetic words).

INVISIBLE (mask) : CAM-BOOD

TRUE IRVISIBLE temporarily turns off all beams of the display, while FALSE INVISIBLE turns
them back on without losing track of which beams were toggled off by *BEAM. See COLOR-MASK.

IRGB (-- 4bits) CODE CAM-HOOD

Color-map compilation variable. Returns the value that will be used as the current entry if no
further changes are made. See also >IRGB and MAKE-CMAP.

IRGB-MAP : CAM-HOQOD

Color map (see MAKE-CMAP) that associates a separate color “beam” with each of the four bit-
planes (or auxiliary table outputs—see SHOW-FUNCTION). Planes 0, 1, 2, 3 correspond to intensity,
red, green, and blue respectively.

LDTBL (-- mask) EQU CAM-IO0
“Load table” bit of the configuration control register. See MAKE-TABLE and CCR.

LL LR LL’ LR’ LLS LRS see UL
LONG? (-~ addr) VARIABLE CAM-STEP

232 Appendix G. Glossary

VARIABLE used by RESET-CAMS to determine the default number of lines in a scan frame. If
more than four CAMs are installed, this variable is ignored and the longest frame is used. On
monitors where the top or bottom edges of the plane array are not visible, adding extra blank
lines to the frame makes more of the display visible (you may have to adjust the vertical-size
control in the monitor to take full advantage of this feature).

See CANMS.
MAKE-CMAP name : CAM-BOOD

Makes a new color map (see Section 9.6). MAKE-CMAP actually generates two copies of the color
map (each nybble representing a color is stored twice, so that each of the 16 cases takes up a
byte). One of the copies is the active map, which is sent to CAM; the other is used to restore
the active map when beams have been temporarily turned ofl (see COLOR-MASK, *BEAM, and
INVISIBLE).

MAKE-CYCLE name : CAM-STEP

Used to attach a Forth word as the active run cycle (see Section 9.9. The run cycle will be
executed as a co-routine by the control panel. The purpose of the run cycle is to modify cam
parameters in a regular cycle in between steps. For example,

: BB-CYCLE
EVEN-GRID STEP
ODD-GRID STEP ;
MAKE-CYCLE BB-CYCLE

will attach BB-CYCLE as the active run cycle. Each time the Forth word NEXT-STEP is executed,
BB-CYCLE will continue execution up to the next occurence of the word STEP, at which point
execution of the cycle will be suspended with all parameters for the next step prepared, but the
new step not yet started.

When BB-CYCLE is first attached by MAKE-CYCLE, EVEN~GRID is executed and the execution is
suspended. The first time that NEXT-STEP is executed, STEP and ODD-GRID are executed, and
then execution is suspended. The second time NEXT-STEP is executed, STEP and EVEN-GRID are
executed, etc. (when you reach the end of BB-CYCLE, execution wraps around to the beginning).
Note that:

NEXT-STEP is the word that is executed when you run steps from the control panel.

— This co-routine has a separate stack from the rest of Forth.

The default run cycle, which is attached whenever you execute NEW-EXPERIMENT, is just
the word STEP.

Since the run cycle begins to execute when you say MAKE-CYCLE (up to the first occurrence
of STEP or IDLE) you should be careful that the experiment does not modify parameters
(such as neighborhood assignments) initialized by the cycle.

MAKE-TABLE name : CAM-HOOD

Used to generate a lookup table from a rule-word, and to send it to CAM (see Section 9.3).

MAP>BUF : CAM-E0OD
Saves the color map table in the color-map buffer. See BUF>HAP.
MOUSE-INIT ¢ CAM-EDIT

3

T3

3

3

13

T3 1 T3

-3

G.1. CAM words 233

Initialize the mouse interface if present.

MOUSE-IRQ# VARIABLE CAM-EDIT

Variable containing the interrupt-request number for the mouse. Default value is 4.

MOUSE-POS (—- row col) : CAM-EDIT

Returns current mouse row and column (or position determined by arrow keys).

MOUSE>ORG (=-- delta-row delta-col) : CAM-KEYS

Resets the mouse to be at the origin (center of the screen), and returns the amount of row- and
column-shift used.

N.EAST
N.WEST
S.EAST
S.WEST

Neighbors made available by the N/MOORE and the B/CORNERS major assignments (cf. CENTER).
During table compilation, N.EAST returns the value of the north-east neighbor on plane 0 or 2,
etec.

No primed or joint versions of these neighbors exist in any of the standard neighborhoods.

¥/CORNERS ¢ CAM-EOOD

Major neighborhood assignment, consisting of CENTER, CENTER’, four corners (¥.EAST, etc.),
and four user neighbors (address lines 6, 7, 8, and 9). See ==.

H/MARG : CAM-HOOD

Major neighborhood, consisting of the neighbors CENTER CENTER’ CW CW’ CCW CCW’ OPP OPP*’
along with their joint versions. Neighbors number 8 and 9 are left as user neighbors—see ==.

N/MARG-HV ¢ CAM-HOOD
B/MARG neighborhood, with BORZ and VERT (and their joint version BV) added.

H/MARG-PH :+ CAM-HOOD

¥/MARG neighborhood, with the pseudo-neighbors PEASE and PHASE’ (and the joint version
PEASES) added.

H/MOORE : CAM-HOOD

Major neighborhood, consisting of the nine neighbors in a 3x3 region on plane 0 (CAM-A) or
plane 2 (caM-B), plus the center cell on the other plane in the same half of CAM. The neighbors
consist of the four corner neighbors of N/CORNERS plus the four side neighbors NORTH SOUTH
WEST EAST, and of course CENTER and CENTER’, which are part of every neighborhood. Only
one joint neighbor, CENTERS, is available.

K/NSWE’ : CAM-HOOD

Major neighborhood, consisting of the four side neighbors NORTH® SOUTH’ EAST’ WEST’, the
usual center cells, and four user neighbors (address lines 6, 7, 8, and 9).

N/USER : CAM-HOOD

234 Appendix G. Glossary

Major neighborhood; attaches address lines 2-9 to user-connector inputs UA2-UA9 (for cAM-a)
or UB2-UBS9 (for CAM-B); as in all other neighborhoods, lines 0 and 1 are connected to CENTER
and CENTER’. This is the default neighborhood used if no other major assignment is made.

See the description of == for an example of how to give names to user neighbors for use in rules.
H/VONX : CAM-HOOD

Major neighborhood, consisting of BORTE XORTH’' SOUTH SOUTH’ WEST WEST’ EAST EAST’
along with the centers and the joint neighbors for all of these (HORTES etc.).

¥/XPAND : CAM-HOOD

Major neighborhood. This is a specialized neighborhood that is supported mainly for use in
the expanded-display mode. It makes available the neighborhood words ROW and COL, which
allow the rule to know the position (mod 4) of the current cell on the screen, and the neighbors
HORTH’ SOUTH’ WEST’ EAST’ CENTER’ and CENTER.

HEW-EVENTS : CAM-STEP

Initializes event counts and stack information that tells subsequent EVERT-COURT whether or
not any events have been missed (because you didn’t read them). It also resets EVENT-TOT, the
cumulative count, to zero.

HEW-EXPERIMENT : CAM-KEYS

This is the word that is normally used to begin an experiment. It uses NEWX to erase all
definitions from the previous experiment (but see PERMANENT) and resets CAM to a standard
state with RESET~CAMS.

NEW=0 : CAM-HOOD

Used during table generation to clear all parts of the current entry (corresponding to all primary
and all auxiliary table outputs) to zero. Otherwise, all parts of the current entry which are not
explicitly set to some new value are left unchanged. See HAXE~TABLE.

HEW=4AA CODE CAM-EOOD

Used within a table definition. Copies the cAM-4A part of a table entry into the cAM-B part. For
example, MAKE-TABLE NEW=AA would make the table for cAM-B be a copy of that for CAM-A.

Note: This copies the table, but not the neighborhood assignment. See B=A for a complete copy.

HEW=BA CODE CAM-HOOD

Interchanges the cAM-A and caAM-B halves of a table entry. MAKE-TABLE NEW=BA would inter-
change the complete tables. See NEW=AA.

HEW=BB : CAM-HOOD
Make both halves of the table entry copies of the caAM-B half. See NEW=AA.
REW=TBUF : CAM-HOOD

Copies the new entry from the table buffer. This allows you to generate tables that are a function
of the contents of the table buffer.

HEWX DEFER CAM-KEYS

This is an abbreviated version of NEW-EXPERIMENT that doesn’t reset CAM—it just erases the
old experiment from the Forth dictionary.

HEXT-CAM : CAM-STEP

N

G.1. CAM words 235

End of a FOR-ALL-CANS ...NEXT-CAM cycle. See FOR-ALL-CAMS.
NEXT-CYCLE : CAM-STEP

Continue executing the run cycle without stopping until you reach the end of it (see MAKE-CYCLE)
and wrap around to the beginning of it; then stop at the first occurence of STEP or IDLE).

HEXT-STEP CREATE-PRO CAM-STEP

Continue executing the run cycle (see MAKE-CYCLE), stopping at the next occurence of STEP or
IDLE).

NORTE (-- bit) == CAM-HOOD
SOUTH

EAST

WEST

NORTR’

SOUTH’

EAST’

WEST’

HORTBS (-- 2bits) : CAM-HOOD
SOUTHS

EASTS

WESTS

NORTH is a neighbor for plane 0 (CAM-A) or plane 2 (CAM-B) made available by the major neigh-
borhood assignments ¥/VONN and N/MOORE; NORTH’ is for planes 1 or 3 (cf. CENTER). Similarly
for SOUTH, EAST, and WEST.

NORTHS etc. are joint versions.

NOT-PL (n) : CAM-BUF
\-PL

/-PL

CW-PL

CCW-PL

RND>PL

S/S-PL

T/B-PL

VAL>PL (val n)

RND>PL (exp n)

NOT-PL performs the logical NoT function on plane n.

\-PL flips the plane across the main diagonal (upper-left /lower-right), /~PL across the secondary
diagonal (lower-left fupper-right).

S/S-PL Flips the plane from side to side, T/B-PL from top to bottom.

CW-PL Rotates the plane one-quarter turn clockwise, CCW-PL counter-clockwise.

VAL>PL Fills the plane with repetitions of the 16-bit pattern val.

RED>PL Generates a random pattern where the expected number of is (over the whole bit-plane)
is exp.

See also AND>PL.

All the above plane operations affect only the active region of the plane, determined by AREA or
a word that calls AREA (such as WHOLE-AREA or CAGE-AREA). See AREA for details.

236 Appendix G. Glossary

ODD-GRID : CAM-BOOD

Sets both horizontal- and vertical-grid origins to the odd value. This word is equivalent to

3 IS <ORG-HV>

OPEN-DATA {filename : CAM-BUF

Open a data file named filename (to be used for reading or numbers as 16-bit words using
GET-DATA and PUT-DATA) and create a Forth word filename that will be used for making this
file the “current” data file. The declaration OPEN-DATA filemame must not occur inside of
a coLON definition. No default extension is supplied; if an extension is desired (DAT is the
recommended extension for data files) it should be typed as part of filename.

As many data files as desired may be simultaneously open. Whenever executed, the word
tilename (which may occur in COLON definitions) changes the currently selected data file to
filename and restores the position pointer within the file to the place where it was at when
you last selected that data file (since it was opened by OPEN-DATA). When a data file are
opened, the pointer is at set at the beginning of the file. You should use the Forth word
CREATE-FILE (it takes the size in 1K blocks as an argument) to create the file before you use it.
See also CLOSE-DATA and DATA-ADDR.

OPEN-PATTERN {filename . CAM-BUF

Open a pattern file named filename for reading or writing plane data (using FILE>IMAGE,
IMAGE>FILE, FILE>PL, and PL>FILE. Works analogously to OPEN-DATA. The recommended ex-
tension for pattern files is PAT (this extension is provided by default when you Get from disk
or Put to disk caM planes directly from the control panel; cf. Section 3.14).

OPEN-TABLE filename : CAM-BUF

Open a table file named filename for reading or writing precompiled lookup tables (using
FILE>TAB and TAB>FILE). Works analogously to OPEN-DATA. The recommended extension for
table files is TAB (this extension is provided by default when you Save tables or Load tables
directly from the control panel; cf. Section 9.5).

OPP OPP’ OPPS see CW
OR>PL see AND>PL
ORDER : CAM-KEYS

Lists the CURRENT and CONTEXT vocabularies, and also which vocabulary ALIAS’es are put into.

ORS see STORES
P*BUF see AND>PL
PAIR (a b -- a+2b) CODE CAM-HOOD

Used to construct joint neighbors, as in
: CERTERS CENTER CENTER’ PAIR ;

It can also be used repeatedly to join a group of one-bit items on the stack into a single binary
number.

PB>PL PBS>PLS see AND>PL

PBUF-SEG (-- segment) SEGMENT CAM-BUF

Returns on the stack the value of the plane-buffer memory segment. This buffer is a memory
area of 4x8K bytes that starts at location PBUF-SEG:0000.

G.1. CAM words 237

PC ¢ CAM-I0

Use the video output of the PC rather than CAM as the signal to be sent to the monitor. This
has effect only when a single display is being shared between CAM and the PC. See DISPLAYS,
CAM, CAM-SELECT, and SEON-CAM.

PCA (-- offset) EQU CAM-IO

Offset of “plane column address” register within each caMm’s shadow segment. This register
always contains the column address that will result in a stationary picture if used for the next
step; thus, it can be incremented or decremented to obtain desired effects. For example, PCA
COCAM 2+ PCA C!CAM would result in the configuration on the currently selected cAM being
shifted 2 nybbles (an 8-cell width) to the left. Note that the column address register contains a
nybble address; this is different from the row address register PRA which contains a bit address:
PRA CQCAM 2+ PRA C!CAM would result in a shift up of only two cell positions.

PDAT (-- offset) EQU CAN-I0
CaM’s plane data area. See BUF>PDAT, B!CELL, and C!CAM.

PDAT>BUF (n dest.seg offs r0 cO #rows #byts row.incr) CODE CANM-I0

Low-level primitive used for all reading of data from plane n into the PC memory. Arguments
have the same meanings as for BUF>PDAT (except that the segment is a destination, rather than
a source). See also ~PDAT>BUF, PL>PB, and PL>TEMP.

PERD : CANM-I0

Sets the STEP-PENDING shadow variable to TRUE. This variable will be cleared the next time the
shadows are copied to caM (usually every 60-th of a second). See WAIT-FOR-PEND. This word is
used by STEP and IDLE.

PERMARENT : CAM-LOAD

NEW-EXPERIMENT normally erases all user-defined words from the Forth dictionary (as does NEWX).
However, if the word PERMANENT is executed, all words in the dictionary at that moment become
permanent, and will not be forgotten if NEW-EXPERIMENT or ¥EWX is subsequently executed. To
forget words you have added to the permanent part of the dictionary, you can use the word
FORGET, as in

FERCE OFF FORGET name PERMANENT

where name could be any Forth word. To make changes to the system more permanent, you can
save a new version of the system using SAVE-SYSTEX.

PERMUTE (new3 new2 newl new0) : CAM-KEYS

The four numbers on the stack specify which planes should to be copied as the new contents of
the four planes. For example,

3 2 0 1 PERMUTE
would interchange planes 0 and 1 and leave the other two unchanged;

111 1 PERMUTE

238 Appendix G. Glossary

isn’t really a permutation—plane 1 is copied onto all planes. Note that, as with other plane
operations, the action of PERMUTE is restricted to the active region of the planes (cf. FOT-PL);
the remainder of each plane (if any) is left unchanged.

PHASE (-- bit) == CAM~-HOOD
PBASE’
PHASES (-- 2bits) : CAM-HOOD

Pseudo-neighbors made available by H/MARG-PE. The value that the Forth pseudo-variable
<PEASE> had immediately before a step is begun can be seen during that step by all cells
through this neighbor. Similarly for PEASE’. PHASES is their joint version. Cf. &PHASE.

PL>FILE (n) : CAM-BUF

Used with OPEN-PATTERN . See FILE>PL.

PL>PB see AND>PL
PL>TEMP (n) : CAM-BUF

Moves data from the active region of plane n to the temporary-buffer area. See /-PL.
PLANE-OPS VOCABULARY CAM-KEYS

Vocabulary containing control-panel commands for operations on CAM’s bit-planes (cf. Chapter
3).

PLNO (-- bit) sNEW CAM-HOOD
PLN1
PLE2
PLN3
PLNA (-- 2bits) : : CAM-HOOD
PLNB

The current value, in the entry under construction, of the bit(s) to be sent to the correponding
table column(s). See >PLNO and MAKE-TABLE.

PLS>PBS see AND>PL

PRA (—— offset) EQU CAM-ID
Offset of “Plane row address” register. See PCA.
PUT-DATA (=n) : CAM-BUF

See GET-DATA , and REWIND . Write n to next location of active data file and autoincrement
DATA-PTR .

R-INIT : CAM-BUF

Initializes the random number generator to a standard state.

R/FLY (data-buf.seg data-buf.offs n ptr-buf #items len) : CAM-IO

Read caM data on the fly. Used to read plane data during vertical-blank interrupt without
affecting stepping or display. Along with W/FLY, this is used to produce the dot and cage
cursors.

The pointer buffer ptr-buf located within the FORTE-SEG contains one row/column pointer for
each data item to be read. As each data item is read, len bytes are appended to the data buffer
which starts at data-buf.seg:data~buf.offs. All items are read from the same plane n.

£

P

T

G.1. CAM words 239

The arguments and operation of W/FLY (write on the fly) are similar—only the direction of data
movement between planes and data buffer is reversed. In both cases, the high-order byte of
#items is used as an additional argument. If this byte is zero, the transfer of the color maps
for all cAM’s from the shadow registers is suppressed before the step during which the R/FLY or
W/FLY operation takes place, to give extra time during the interrupt for reading or writing plane
data. The maximum number of items which can be read or written during a single interrupt is
10 (hex).

See also DOT, BQCELL, and PL>PB. Cumulative information about plane contents can also be
obtained without slowing down the updating or hindering the display using the event counters
(see EVENT-COUNT).

REG-TABS : CAM-BHOOQD

Used to select the regular tables for both caM-a and cAM-B. This is useful in a run cycle—see
also AUX-TABS, <TAB-A> and MAKE-CYCLE.

RESET-CAMS : CAM-STEP

This word is called by NEW-EXPERIMENT and by DISPLAYS. It resets all CAMs to a standard state,
by doing the following:

— setting up the default neighborhoods ¥/USER and&/USER

— setting up the default tables (zero for all planes — see MAKE-TABLE)
— setting up the default run cycle (to STEP; see MAKE-CYCLE)

— setting up the default color map (to STD-MAP; see MAKE-CMAP)

- clearing all planes (but not the plane buffers) to zeros

— sgetting up the default number of lines in a frame (see LONG?).

— sgelecting CAM 0 (the master CAM) as the current one (see CAM-SELECT)

REWIND ¢+ CAM-BUF
Used to reset DATA-PTR to zero. See OPEN-DATA .
RND (—— n) CODE CAM-BUF

Returns a 16-bit random number.
RND>BUF (n dest.seg dest.offs len) CODE CAM-BUF

Fill a buffer of the given size, at the given position, with bits that have a probability of n/65536
of being a 1. (n is the expected number of 1s for a buffer the size of a bit plane). Note that len
is in bytes.

RND>PL see NOT-PL

ROW (-- 2bits) : CAM-HOOD

Neighbor in the H/XPAND neighborhood. Current cell’s row position on the screen, mod 4.
S.EAST S.WEST see N.EAST

S/S-PL see HOT-PL

SEG= (segi offsi seg2 offs2 len -- flag) CODE CAM-KEYS

Compares two strings of length len, starting at the given segments and offsets—returns a TRUE
flag on the stack if the strings are identical.

240 Appendix G. Glossary

SEND-SEBIFTS (hold.mask) : CAM-STEP

Overwrites the lookup tables of all cAMs with a “service” rule that is used for shifting the
bit-planes. Usually used within a BEGIN-SERVICE-STEPS ...END-SERVICE-STEPS pair—which
takes care of saving and then restoring the current rule.

A rule that depends on &PHASES is sent to all caMs; depending on the value of these phases,
we get different shift directions (see SRIFT). Only the regular tables are used for shifting; the
auxiliary tables are given the value that the selected cCAM’s table had, to allow SHOW-FUNCTION
(see) to keep working even during shifts. (Actually, the auxiliary tables sent by SEND-SHIFTS are
constructed from the table saved by BEGIN-SERVICE-STEPS (see also TSAV-SEG); if SERD-SEIFTS
is not being used within the “SERVICE-STEPS” construct, these auxiliary tables will be invalid.)

This is a lower-level word than SHIFTS. See the description of the hold.mask under SHIFTS; see
also SHIFT.

SET-CCR (mask) CODE CAM-I0

Uses the mask to set all indicated bits of the CCR to 1 (all those which have 1s in corresponding
positions in the mask). From most to least significant, the CCR bits have the names USETAB,
DPYRQ, VGLUE, EGLUE, LDTBL, INTENB, DPYNRN, and CAMOUT; most of these are documented in
this glossary. Only VGLUE and HGLUE will be typically controlled by explicitly using SET-CCR.
See also COCAM and CLR-CCR.

SHAD-PTR (-- addr) VARIABLE CAM-I0
Pointer to the shadow registers corresponding to the selected caM. See CAM-SELECT.
SHAD-SEG (-- segment) : CAM-ID

Returns on the stack the value of selected caM’s shadow-memory segment. This is used to
access CAM’s shadow variables directly, rather than via the effects of words such as ¥/MOORE,
EVEN-GRID, MAKE-CMAP, etc. See also STPO-SEG and STP1-SEG.

SHIFT (HSWE.mask) : CAM-KEYS

Assumes that the shift-tables have been downloaded (see SEND-SHIFTS). Causes a shift of one
position in the direction indicated by the shift mask. For example, 8 indicates a shift up of all
CAMs, 4 a shift down, 2 a shift left, 1 a shift right, 9 a shift up-and-right, etc. All caMs are
shifted simultaneously.

SHIFTS (delta-row delta-col hold.mask) : CAM-KEYS

Loads the shift tables and performs the indicated shifts of all bit-planes which aren’t held
fixed by the hold.mask argument: 1s in the mask cause corresponding planes (bit position 0
corresponds to plane 0, etc.) to be held fixed. Note that MOUSE>ORG produces arguments in the
correct format for SEIFTS.

SHOW-CAM (n) ¢ CANM-IO

Assumes that all caM video-outputs are daisy-chained and connected to a single monitor.
SHOW-CAM will cause the indicated caM’s internal video signal to be the one passed through
the chain to the monitor. This word doesn’t change the selected cAM (see CAM~SELECT)—it only
controls which output is visible.

SHOW-FUNCTION : CAM-HOOD

Direct the output of the auxiliary tables to be taken as the input to the color map, in place of
the four bits of the center cell. See also SHOW-STATE.

G.1. CAM words 241

SHOW-STATE ¢ CAM-BOOD

Cause the four bit cell values to be used directly as the inputs to the color map—see
SHOW-FUNCTION.

SIG (n -- +1l0]|-1) : CAM-EDIT

Returns the sign of the number on the stack—0 gives 0.

SOUTH SOUTE'’ SOUTHS see NORTH
SRQ (-- offset) EQU CAM-I0

Pointer to the hardware “step request” register. Since step requesting is normally mediated by
the CAM interrupt service routine, this register would only be directly written to in order to test
the hardware. See C!CAM, CAM-BASE.

SSR (— offset) EQU CAN-IO

This points to the hardware “step status” register, which is normally monitored by the CAM in-
terrupt service routine. It can be read directly using CQCAM, as in SSR CQCAM. See also CAM-BASE.

The low-order bit is a diagnostic bit, DIAG, used to test the CAM hardware. The high-order
bit is the “event detected” bit, EVENT, which indicates whether or not:the intensity output of
the color map was ever on during the most recent step (this is used by EVENT-STOP and by
EVENT-COUNT). The other bits reflect the dynamic progress of the step as it runs (Is there a step
running? waiting to run? is the display on? are we within the active portion of the line right
now? etc.).

STD-MAP : CAM-HOOD

Standard color map, which assigns the three primary colors to caAM-A. This map is useful when
we are primarily interested in planes 0 and 1; planes 2 and 3 are only used for highlighting.

STEP : CAM-STEP

Triggers one CAM cell-updating step. All of the cAM parameters should have been set up before
this (such as neighborhood, phases, spatial origin, color map, etc.—see N/MOORE etc., <PEASE>
etc.). Execution of the Forth word following STEP will not proceed until shadow variables
containing these CAM parameters have been copied to caM, and the actual step has begun (see
PEND and WAIT-FOR~PEND, which STEP makes use of).

In order to allow steps to run at full speed (every 60-th of a second) the parameters for the next
step must be set up while the current step is running. This must be kept in mind when reading
event-count information—see EVENT-COUNT. If no instruction to run an active (updating) step
has been sent to CAM before the step that is running is completed, an idle (display-only) step
will be scheduled.

Used in conjunction with a run cycle (see MAKE-CYCLE), STEP causes a coroutine exit to the main
program—the run cycle routine is resumed by executing NEXT-STEP. If STEP is executed in the
main program, no exit occurs. IDLE behaves like STEP in all respects (including the coroutine
exit) except that no updating occurs: all shadow parameters (in particular, color maps and
neighborhood assignments) are transfered and an idle step is begun before execution of the
instruction following IDLE occurs. When multiple caMs are used together, all cAMs respond as
a group to a stepping request: they all either step or idle at the same time.

See also STEPS, STEP-NUMBER, EVENT-HANDLER, BEGIN-SERVICE-STEPS, and SEIFTS.

STEP-BASE (-~ addr) VARIABLE CAM-INT

242 Appendix G. Glossary

Contains the base address for the step status and control information for all caMms (including
shadow registers). It is changed by BEGIN-SERVICE-STEPS to use a distinct set of control
information for service steps. See STP1-SEG and STEP-SEG.

STEP-COUNT (-- offset) EQU CAM-INT

Offset within the STEP-SEG of a double-number system variable which is incremented each time
an active step (as opposed to an idle step in which display but no updating occured) is completed.
This counter is incremented by the caM interrupt routine.

STEP-HUMBER (-- addr) 2VARIABLE CAM-STEP

This double-number VARIABLE is incremented each time the word STEP is executed. It is used by
the CAM control-panel program to run a specified number of steps by starting it with a negative
value: when this number reaches zero, STEP turns off the STEPPING? flag (see STOP).

When running a reversible rule, this stopping mechanism can be quite convenient. Start the

count at zero, and negate it when you reverse direction—when you reach zero (the starting
configuration) the stepping will halt.

This variable is maintained by the word STEP—it is distinct from the doubleword STEP-COUNT
variable within the STEP-SEG, which is incremented by the CAM interrupt service routine each
time an active step is started. See also -STEP#.

STEP-PENDING (—- offset) EQU CAM-INT

This is the offset into the STEP-SEG of a one-byte system variable. It is not examined by
the interrupt, but it is cleared each time shadow information is copied to CAM; this lets the
foreground routine know that its safe to change the shadow data. This flag is used as a semaphore
by STEP and IDLE, which set this flag and then wait for it to clear before allowing execution to
proceed.

STEP-SEG (-- segment) : CAM-IO

Returns on the stack the segment containing global step information which applies to all CAMs
(such as the STEP-PENDING flag). See also STPO-SEG, STEP-TYPE, STEP-COUNT, EVENT-MASK,
EVERT-TYPE, EVENT-LEN, and EVENT-STOP.

STEP-TYPE (-- offset) EQU CAM-INT

This is the offset into the STEP-SEG of a one-byte system variable. Whenever shadow data is
copied to CAM by the interrupt service routine, this byte is copied to the SRQ register of the
master CAM. If the high bit of this register is set, an active (updating) step is begun; if this bit
is a gzero, an idle (display) step occurs, with the new parameters transferred from the shadow
registers. STEP and IDLE use this mechanism. See also STEP-PENDING.

STEPPING? (-- addr) VARIABLE CAM-STEP

This variable is used as a flag by the control-panel program to indicate whether CAM is running
or stopped. It can be set or cleared with the words GO or STOP. It is also cleared by the word
STEP if the doubleword variable STEP-HUMBER, which is incremented by STEP, becomes zero.

STEPRQ (-- mask) EQU CAM-IO

Step request bit of the step status register---sce SSR.

STEPS (n) : CAM-STEP

Executes the word STEP n timcs.

i

G.1. CAM words 243

STOP ¢ CAM-KEYS

Sets a flag (see STEPPING?) used by the control panel to indicate that CAM is not running. STOP
is used by Stop.running, which is invoked by from the control panel; any user-defined
key can cause stepping to stop by executing this word. STOP can even be used inside of a run
cycle (see MAKE-CYCLE) to cause an experiment to stop itself and wait for the experimenter to
restart it.

STORES (n dest.seg offs count) CODE CAM-BUF
ANDS
ORS
XORS

STORES stores the 16-bit value n in count consecutive memory words.
ANDS AND’s this value with the contents of those words. Similarly for ORS and XORS.

STPO-SEG (-- segment) SEGMENT CAM-BUF
STP1-SEG

This is the area which normally contains the global step information and shadow variables used
during CAM stepping (this is the normal value returned by STEP-SEG). While service steps are
being run (see BEGIN-SERVICE-STEPS), the STP1-SEG becomes the step segment instead—all
counts accumulated during these steps accumulate there, and all other changes are made there.
This makes it easy to go back to the state the machine had before the service steps began.

T#BUF ¢ CAM-BUF

Exchanges the content of the lookup tables and the table-buffer.

T/B-PL see HOT-PL

TAA (-~ offset) EQU CAM-I0
TBA

TAA is the offset of the “caM-a table-address source select” register within each caM’s shadow
segment—see CAM-4, §/MOORE (and other neighborhood words) and C!CAM. Similarly for TBA and
CAM-B.

TAB>BUF : CAM-BUF

Saves the lookup tables to their buffer.

TAB>FILE ¢ CAM-BUF
Save entire lookup tables to current table file. Used with OPEN~TABLE.

TBA see TAA
TBUF-SEG (-- segment) SEGMENT CAM-BUF

This is the 4K byte segment used by TAB>BUF and BUF>TAB to save and restore the contents of
CAM’s lookup tables. See also TSAV-SEG.

TDAT (-- offset) EQU CaAM-IO

Table data area within CAM hardware segment. Normally accessed using MAKE-TABLE, TAB>BUF,
and BUF>TAB. Can also be accessed directly—see C!CAM.

TDAT>BUF (buf.seg buf.offs first.page #pages) CODE CAM-IO

244 Appendix G. Glossary

Low-level primitive for copying table data from caM to the PC. The arguments have the same
order and meaning as for BUF>TDAT (except of course that the buffer is a destination this time).
See also TAB>BUF.

TEMP-SEG (-- segment) SEGMENT CAM-BUF

Returns the segment address of the 8K temporary buffer.
TEMP>PL (n) ¢ CAM-BUF

Copy the contents of the temporary buffer to the active region of plane n. See KOT-PL.
TICK ¢ CAM-LOAD

Delays the execution by 55 msec.

TICKS (n) ¢ CAM-LOAD
Delays the execution by &~ nx55 msec.

TRACE : CAM-HEOOD

MAKE-TABLE TRACE will cause the rule for plane 1 to logically OR its previous contents with the
current contents of plane 0. Thus plane 1 will act like an infinite-persistence phosphor: once a
bit has been “on” on plane 0, the trace will remain lit until cleared.

TSAV-SEG (-- segment) SEGMENT CAM-STEP

This is the segment used by BEGIN-SERVICE-STEPS to save the contents of the tables for up to
eight caMs. END-SERVICE-STEPS restores the tables from this buffer.

Since this is a very transient buffer, needed only during service steps (such as shifts—see SRIFTS
and SEND-SHIFTS), we put this above all other segments and dynamically allocate and deallocate
it as needed. 4K bytes are allocated for every caM that is present before the tables are saved,
and deallocated whenever they are restored. Thus when EXEC is executed there is as much
memory as possible for executing commands from pos.

UL (-- bit) : CAM-HOOD
UR

LL

LR

ULJ

UR)

LLJ

LR)

ULS (-—- 2bits)
URS

LLS

LRS

Neighbors made available by the ¥/MARG-EV major neighborhood assignment. UL returns on
the stack the value, for the case under consideration, of the upper-left cell in the Margolus
neighborhood (plane 0 for cAM-A, 2 for CAM-B); UR, of the upper-right neighbor; LL, of lower-
left; and LR of lower-right. (Cf. CERTER and MAKE-TABLE).

Similarly for the primed versions—all referring to planes 1 or 3, and the joint versions (e.g.,
ULS=UL+2xUL").

2

3

G.1. CAM words 245

USETAB (-- mask) EQU CAM-IO

This is the bit in the configuration control register which decides whether the input to the
color map should come from the auxiliary tables or directly from the bit-planes. The words
SHOW-FUNCTION and SEOW-STATE respectively set and clear this bit—see also SET-CCR.

Vi (-- bit) == CAM-HOOD

Pseudo-neighbor available as part of the B/XPAND neighborhood. Returns the second-least sig-
nificant bit of the vertical position of the center cell. See also VERT and ROW.

VAL>PL see NOT-PL
VERT see HORZ
VGLUE (-- mask) EQU CANM-10

This bit in the configuration control register controls whether vertical gluing of several cam’s
into one longer CAM (via the vertical-glue connector) is enabled. See HGLUE.

VRUN (—- mask) EQU CANM-IO

“Vertical run” bit of the step status register—see SSR.

W/FLY (data-buf.seg data-buf.offs n ptr-buf #items len) : CAM-IO
Write on the fly—see R/FLY.
WAIT-FOR-IDLE CODE CAM-I0D

Wait until CAM is inactive—no step in progress and none about to start.

WAIT-FOR-PEND ¢ CAM-I0

Waits until the STEP-PENDING shadow variable is reset to FALSE, indicating that caM has been
serviced since STEP-PENDING was set to TRUE. See PERD.

WEST WEST’ WESTS see NORTH
WHOLE-AREA : CAM-BUF

Sets the whole screen to be the active region for plane operations—see AREA.

X (-- addx) VARIABLE CAM-HOOD

Index variable used during table generation. Compilation variables return bits of this index
variable, which runs through all possible cases as it takes on values from 0 to 4095. Cf. Y.

XOR>PL see AND>PL
XORS see STORES
Y (-- addr) VARIABLE CAM-BEOCD

A variable used during table generation as a scratchpad for the current entry. The low eight
bits correspond to the eight lookup-table columns (four for cAM-A and four for caM-B). Cf. tt
X.

\-PL see BOT-PL

246 Appendix G. Glossary

G.2 Notable F83 words

'L (n segment offset) CODE CPU80OBS

“Long store:” store n at segment:offset. While ordinary Forth addresses refer to the 64K segment
in which the Forth system resides, this can access any location in the PC address space.

USED name : PC

This is a utility function, used for finding all definitions that make use of the indicated word.
It works by searching through the Forth dictionary, looking for any pointers to the given word.
Since the search is crude (it just looks for any 16-bit value in the dictionary that matches the
given word’s code-field address), some extra matches may be returned—but no true matches
will be missed.

See also vOC.

BREAK : PC

This acts like an execution vector (see DEFER), and is given control when is pressed.
The “break” always occurs between two Forth words (it never interrupts a machine-language
routine). The action of #BREAK# can be modified using the word IS. For example, ' TRAP IS
BREAK would cause the word TRAP to be executed whenever the key is invoked (TRAP
is in fact the normal word executed by #*BREAK*). See also BREAK-ENABLE and BREAK-DISABLE.

+TERU (nO ni1) : EXTENDS6

From the current “from” file load screens n + ng through n + n;, where n is the screen where
+THRU appears (cf. TERU).

— : EXTEND86

Load next screen, skipping the rest of the current one.

PC

Used to re-enter the screen editor from Forth where you last left off. If a new current-file has
been established (see USING) this file will be edited instead. See also EDIT, M, and FIX.

.HAKE (nta) : KERNELB6

Print word name, given its name-field address. See >NAKE.

2!L (& seg offs) : PC

Double-number “long store” (see !L).

2« (n -- 2¢n) CODE KERNELS6
Multiplies by 2 by shifting.

20L (seg offs -~ d) i PC
Double-number “long fetch” (see @L).

2°F (n --2"n) CODE PC

Given a number from 0 to 15 (decimal) this word returns a 16-bit value with the n-th bit set to
one, the other bits set to zero.

G.2. Notable F83 words 247

4« (n -- 4#n) CODE KERNELS6
Multiply by 4 by shifting.

8* (n -- 8+%n) CODE KERNELS6
Multiplies by 8 by shifting.

¢ UTILITY
“On-the-fly” compiler, used from the interpreter to execute a phrase containing flow-control
directives such as IF ... THEN etc., which are not available in the interpretive mode. If you
type

¢ 7F 20 DO I EMIT LOOP ;

the interpreter will compile a nameless word identical to PRINT~ASCII of Section 5.10 and execute
it—without taking any permanent space in the dictionary.

>BODY (cfa -- pfa) : KERNELS6

Given the code-field address of a word, returns its parameter-field address, i.e., the address of
the first (and possibly the only) data or program cell.

SLINK (cfa -- 1lfa) ¢ KERNELS6

Given the code-field address of a word, returns its link-field address (within each vocabulary, all
words form a linked list).

S>HAME (cfa -- nfa) : KERNELS6

Given the code-field address of a word, returns its name-field address.

>VIEW (cfa -~ vfa) : KERREL86

Given the code-field address of a word, returns its view-field address.

el (segment offset —- n) CODE CPUB086

“Long fetch.” Fetch n from segment:offset. While ordinary Forth addresses refer to the 64K
segment in which the Forth system resides, this can access any location in the Pc address space.

A-EMIT (char) : PC

This is the normal function pointed to by the DEFERred word EMIT. It outputs char to the display
screen with the current attribute (see also TYPER). If the variable PRINTING? is set (see OR) the
same character is also sent to the standard printer.

ALSO : EXTEND8S
Vocabulary search order specifier. See Section 5.17.
ARRAY name (n) : PC

Defines, under the given name, a one-dimensional array of Forth cells, consisting of n entries.
When executed with a number ¢ on the stack, the word name will return the address of its i-th
cell.

AT (col row) : PC

Positions the display cursor on the PC at the given row and column.

248 Appendix G. Glossary

AUTO-X (=-- addr) VARIABLE PC

Controls the auto-extend/auto-shrink feature of the Forth screen editor: if non-zero, this feature
is enabled.

BETWEES (n min max -- 1) : KERNELS6
Returns a TRUE flag if n is in the closed interval min € n < max.

BLINK (-- addr) VARIABLE PC
If this variable is set (see ON), subsequently EMITted characters will blink.

BLOCK (n -- addr) : KERNEL86

Makes sure that the n-th 1024-byte block of data from the current file is present in a block
buffer in memory (copying it from disk if necessary), and returns the address of this buffer.

BODY> (pfa -- cfa) : KERNELS86
Given parameter-field address of a word, returns its code-field address (cf. >BODY).
BREAK-DISABLE : PC
Temporarily suppress the action of the key—see BREAK-ENABLE and *BREAKs.
BREAK-ENABLE : PC

Restore the action of the key. If the key was pressed while the break function was
disabled, its effect will take place now. See BREAK-DISABLE and *BREAK+*.

C!L (n segment offset) CODE CPU8086
“Long store” of one byte (<f. !L).

CeL (segment offset -- n) CODE CPU8086
“Long fetch” of one byte (cf. !0).

CAPACITY (=-- n) : KERNELB6
Returns the size (in 1024-byte blocks) of the current file.

CAPS (=-- addr) VARIABLE KERNELS86

When this VARIABLE is set, characters read by the interpreter are converted to upper case.

CARRAY (1len) : PC
Like ARRAY, but the array elements are bytes, to be accessed by €@ and C!.
CENTRONICS : UTILITY

Similar to EPSON, for a Centronics-like printer.

CoM CREATE PC

Exits to the DOS command interpreter. Upon return, continues with the following instruction,
with the stack unchanged. If you return to Forth with the directory changed, Forth will complain
when you try to continue editing files in the old directory. Defined using >D0S (which in turn
calls EXEC) as follows:

CREATE COM ," ™ >DOS

v

£

G.2. Notable F83 words 249

To see how to define Forth words which invoke DOS commands, see >D0S. Used by DOS... in
previous section.

CONVEY (first last) : UTILITY

Copy a consecutive range of screens (see Section 7.6). A second version of this word exists
in the SEADOV vocabulary for moving screens along with their documentation ‘shadows.” The
arguments are the same as above—you give the command as if you were just moving the code
screens.

COPY (from to) : UTILITY

Copy the contents of a screen to another screen, updating the disk to reflect the change.

CREATE-FILE filename (#blocks) : EXTENDSS

Create a file of given size (in blocks) and given name. If the file already exists, the old version
will be deleted.

DARK : PC

Clear the PC screen (to the default attribute).

DEBUG name ¢ UTILITY

Setup to trace the execution of the given word. Tracing will subsequently occur whenever the
given word is executed. After each instruction comprising the word is executed, the name of the
instruction and the contents of the stack at that point will be displayed; hit SPACE to continue
with the execution.

Tracing can be turned off by executing UNBUG, or by pressing . Tracing can be temporar-
ily suspended by pressing the F key, which puts you in Forth and lets you examine variables.
Resume tracing using RESUME.

DEFER name . : KERNELS86

Defining word used to construct a vectored-execution word. The vector is set using the word
1S, and can be examined using the word SEE. For example, DEFER EMIT defines the word EMIT
to be such a deferred word, and

* A-EMIT IS EMIT

vectors EMIT to execute A-EMIT.

DIR filespec : EXTEND86

List all files in the current directory matching the given file specification (example: DIR #.PAT)
. If no specification is given, the whole directory is listed. See also USING.

DISCARD : KERNELS6

The opposite of UPDATE: marks a block buffer as reusable at any time without saving its contents
to disk.

>D0OS : PC

Used to define Forth words which execute commands at the DOS level. For example,

CREATE BACKUP ," /c copy c:*.exp a:" >DOS

250 Appendix G. Glossary

would create a Forth word BACKUP which, when executed, would copy all experiment files from
drive C: to drive A: to produce a backup. Any executable file can be invoked in a similar
manner. >DOS is a defining word which causes the most recently defined word to invoke EXEC
on its parameters when it is executed. COM is defined using >DOS. See also DOS. .. in the CAM
section of the glossary.

DRIVE drivespec (-- n) : EXTENDS86

Converts a drive specification into a number. For example, DRIVE B: leaves the number 2 on
the stack. See IS-HOME-OF.

DUMP (addr len) ¢ UTILITY

Produces a formatted dump of the specified number of memory bytes starting from the given
address. See LDUMP.

EDIT (n) ¢ PC

Begin editing screen n of the current file. Note that if editing is initiated from Forth, when you
leave the editor (by pressing) you return to Forth.

END DEFER KERNEL86

This DEFERred word is executed by BYE before exiting to DOS. It normally points to a routine
which restores the various interrupt vectors that the Forth system program used, and performs
other similar clean-up activities.

EPSON : UTILITY

Send the character codes necessary to set up an Epson-like printer (such as the standard-issue
PC printer) for compressed printing mode. Used by SHOW and LISTING in order to produce
compact listings. See also CENTRONICS and INIT-PR.

EXPECTR (addr len) DEFER PC

Same as Forth’s standard EXPECT, but complements the reverse-video attribute while it is active,
to highlight the input. See REVERSE.

FIX name : PC

Find the source for the given word, and enter the editor at the appropriate point to edit it. If
the word is a system word (part of F83 or of CAM), the appropriate sources must be on-line and
on the expected drive (see IS-HOME-OF). If the sources aren’t online, FIX will at least tell you
what file and screen the sources were in. If the word is one that you have defined yourself, then
it will be found only if it is in the current file (but ¢f. Section 6.1) . See alsc VIEW, EDIT, and M.

FLIP (n -— n’) CODE KERNELS6
Swap high and low byte in given 16-bit quantity.

FORGET name CODE KERNEL86

Look up the given word in the current vocabulary, and forget all entries that were made in the
dictionary since that word was defined (including name itself)

FORM-FEED : UTILITY
Send CR and FF codes for printer form feed.

FORTH-SEG (-- seg) CODE KERNELS86

{==

™

id

o

G.2. Notable F83 words 251

Returns the address (in 16-byte “paragraphs”) of the segment containing the Forth system
proper. This is useful for example in intersegment moves. See also LMOVE, QL, etc.

FROM filename ¢ EXTEND86

Used for loading one file from within another (see also INCLUDE) and for copying screens from
one file to another, in association with CONVEY. Opens the named file as the current input (or
“from”) file.

G CODE PC

Used when Forth is running under the DEBUG.COM program, to transfer control to debug by
issuing an interrupt 3. If interrupt 3 is not being trapped, G does nothing.
I’M name : PC

This is used to set the 3-character identifier that appears in the upper right corner of screens
modified from the editor. Only screens which have a comment line at the top (one starting with
a backslash) are marked.

I/BORM : PC

Restore KEY and KEY? to their default values, in case these DEFERred words have been redefined
in order to redirect input.

INIT-PR DEFER UTILITY

DEFERred word, executed to put printer in compressed-text mode. See EPSON and CENTRONICS.
INSO (-- addr) VARIABLE PC

Variable which controls whether the insert mode is on (non-zero value) or off each time you
enter the editor.

INS-SCR (n) : PC

Insert n blank screens in the current file, immediately before the screen last accessed by the
editor.

INTERSITY (-- addr) VARIABLE PC

This variable controls whether or not subsequently EMITted characters will be intensified—see
BLINK.

IS name (n) : KERNELS6

The value on the stack is stored in the data cell associated with the word whose name follows. If
this is a VARIABLE, CONSTANT, or DEFERred word, the data cell is simply the word’s parameter
field. Typically, IS is used for changing the value of a CONSTANT or a pseudo-variable, or for
changing the routine pointed to by a DEFERred word.

IS-HOME-OF (n) : EXTEND86
Used to reset the drive specification used by FIX and VIEW to find a source file. For example,

DRIVE B: IS-HOME-OF KERNEL86.4TH

can be used to tell these words that this file is now to be found on drive B: —rather than whatever
drive the file was on when the system was last compiled (usually C:).

KNAME (pckey -- str|0) : PC

252 Appendix G. Glossary

Used to convert a key code returned by PCKEY (which is the default KEY routine) into a pointer
to a counted string that names the key. If no name has been assigned to this key, 0 is returned.

UTILITY

x - v

L lists the most recently VIEWed screen again, H the next, P the previous; T toggles the shadow
twin; and ¥ calls the editor for modifying the current view-screen. See VIEW. '

L>BAME (1fa -- nfa) : KERKELS6
Given the link-field address of a word, returns its name-field address (cf. >LINK).

LDUMP (seg offs len) : UTILITY
Like DUMP, but with a “long” address consisting of segment:offset.

LINK> (lfa -- cfa) : KERNEL86
Given the link-field address of a word, returns its code-field address (cf. >LINK).

LISTING : UTILITY

Used to produce a complete listing of the current file, assumed to have shadow screens. For
other files, see SHOW.

LMOVE (src.seg offs dest.seg offs #byts) CODE PC
Intersegment move of data from source-segment:offset to destination.

LOWR : PC
Put the Pc in lower-case shift state.

. see L

MARY : UTILITY

If you type a single line of the form
phrase MANY

the given phrase will be interpreted over and over. Hitting any key aborts the loop.
HARK name : EXTEND86

Define a word which, when called, will FORGET everything up to but not including the word
itself. If you are debugging an application and expect to have to load its source file over and
over before it reaches its final form, it’s inconvenient to have to FORGET by hand the latest
version every time you load a new one. Enter FOOLING as the first line of your file, type MARK
FOOLING at the keyboard to put your place marker in the dictionary, and every time you load
the file the dictionary will be cleaned up to there as the first thing.

The cAM words NEWY and NEW-EXPERIMENT make use of this mechanism to clear out old defini-
tions.

R see L
E>LINK (nfa -- 1fa) : KERNELS86

Given the name-field address of a word, returns its link-field address (cf. >LINK).

G.2. Notable F83 words 253
NAME> (nfa -- cfa) : KERNELS6
Given a name-field address, return the corresponding code-field address.

NNUNM : PC
Set the PC to no-NUMLOCK mode.

HORMAL DEFER PC
Reset display attributes and keyboard shift states to a default value.

NUMBER (str =-- d) DEFER KERNELS86
Attempts to convert the given string to a number, always returned in double-number form.
NUML : PC
Put the PC into NuMLocK mode.

O/NORM . PC
Reset EMIT to point to A-EMIT, the normal output routine.

OFF (addr) : EXTEND86
ON

0¥ sets the data cell at addr to TRUE (=FFFF); OFF sets it to FALSE (=OOOO);

ONLY : EXTEND86
Vocabulary search order specifier. See Section 5.17.

P see L

PAGE + UTILITY

Set up the printer to go to a new page, and appropriately increment or reset the internal page,
line, and character counters.

PCKEY (-- char.code) : PC

The normal input routine, pointed to by KEY. All normal ASCII characters are returned un-
changed; special PC characters are returned as negative numbers (the negative of the non-zero
part of their two-byte codes). Thus all non-printing characters are numerically less than the
SPACE character. See also KNAME and PEEK.

PEEK (-- val) : PC

This acts the same as PCKEY, but doesn’t remove the character from the input bufier. If no
character is waiting in the input buffer, returns a 0.

PREVIOUS : EXTENDS86
Vocabulary search order specifier. See Section 5.17.

RECURSE ¢ KERNELS6
Within a coLoN-compiled word, this is a recursive call to the word itself. See RECURSIVE.
RECURSIVE : KERNELS8S6

Used within the definition of a COLON-compiled word, say MY-WORD, to let any subsequent
occurrences of MY-WORD in the definition refer to the very word under compilation rather than a
previous word of the same name (if any) already in the dictionary (cf. Section 5.3, and footnote
1 of Chapter C). See RECURSE.

254 Appendix G. Glossary

RESUME ¢ UTILITY

Can be used to continue a Forth trace (see DEBUG) after temporarily suspending it to re-enter
Forth to examine variables, etc.

REVERSE (-- addr) VARIABLE PC
When REVERSE is set, subsequent characters ENITted are in reverse-video. See BLINK.
ROOT VOCABULARY EXTEND86

This is the root vocabulary, included in every search order (but cf. SEAL). See Section 5.17.

S-KEYS (-- addrx) VARIABLE PC

When this variable is TRUE (=FFFF), all shift keys behave normally. When this variable is set
to F (hex) the action of all shift-lock keys (CaPsLock, ScroLLLock, NuMLock, and INs) is
suppressed.

SAVE-SYSTEM filename : EXTEND86

Save “as is” to a file an executable version of the currently running Forth (or caM Forth) system,
with its entire dictionary up to HERE; the values of variables and other changeable data cells in
the dictionary are saved as well. Data outside the dictionary (such as disk-block buffers) are
" not saved. Useful for saving minor changes, default settings, etc. without having to recompile
the system. F83 takes approximately 31K bytes; caM Forth approximately 58K.

Typical usage:

SAVE-SYSTEM CAM.EXE

SCAN (addr len char -- addr’ len’) CODE KERNELB6

In a buffer at position addr, for a length len, scan for the first occurrence of char, returning the
position where it was found, and how many characters remain in the buffer from that position
on.

SEAL : EXTEND86

Vocabulary search order specifier (cf. Section 5.17). It removes the ROOT vocabulary from the
search order, thus preventing further manipulation of the search order. Used for protected or
turn-key applications.

SEE name ¢ UTILITY

Decompile the indicated word. This restricted ability to look at word definitions is available
without reference to source code. See also VIEW and VOC.

SEGHENT name (n) : PC

Used to reserve space in the PC’s memory outside of the segment in which the caMm Forth code
resides, for data buffers. Makes the word that follows a Forth constant that returns the segment
of an allocated space of n contiguous bytes. SEGMENT calls DOS function 44 (hex) to inform DOS
of the new allocation. For instance, 600 SEGMENT EX~SEG reserves 500 bytes and sets EX-SEG to
the memory segment value so that the first byte of the reserved area is at location EX-SEG:0000.
If n=0, a 64K segment is allocated.

SEG-TOT (~-- addr) VARIABLE PC

Vil

o

4y

G.2. Notable F83 words 255

This variable contains the total amount of memory space (in 16-byte paragraphs) used by
the Forth system, including the segment where the system itself resides. It is incremented by
SEGMENT.

SET-BASE DEFER PC

DEFERred word which is used to set the default base. Usually points to either DECIMAL or HEX.

SET-MEM (#paragraphs) : PC
Inform DOS of the current memory allocation that Forth is using. See SEGMENT.

SHADOW VOCABULARY VUTILITY

Vocabulary used in conjunction with documentation screens (“shadow” screens). CONVEY has a
shadow-version which copies both code and shadows simultaneously, when given the parameters
for copying the code alone. SHOW also has a shadow version, which is used in LISTING.

SHOW (first last) . UTILITY
Listing utility—see Section 7.5.

SKIP (addr len char -- addr’ len') CODE KERNELS86
Scan until the first character that doesn’t match char (cf. SCAK).

SLOW-KEY : PC

Used with caM key definitions that are slow to execute—this clears the keyboard buffer so that
repeats of the slow key aren’t inadvertently accumulated.

T see L
THRU (nO ni) : EXTENDS86

From the current input (or “from”) file, load screens ng through n;.

TIMES (n) : UTILITY
If you type a single line of the form

phrase 7 TIMES

the given phrase will be interpreted seven times (cf. MARY).

TO 1st.dest (1st.source last.source —-- 1st.source last.source) : UTILITY
Used with CONVEY.
TRAP DEFER KERNELS6

Executed as part of the processing whenever an error or a keyboard occurs. This is a
DEFERred word.

TYPER (addr len) : PC

EMIT’s a string with the REVERSE attribute inverted—used for highlighting.

UEXT (-- addr) CREATE PC
Points to the default filename and extension used by USING.

UM/MOD (d n -- remainder quotient) CODE KERNELS6

256 Appendix G. Glossary

Forth’s unsigned-division primitive—a double number is divided by a single number to produce
single remainder and quotient.

UNDERLINE (-- addr) VARIABLE PC

When this VARIABLE is set, subsequently EMITted characters will have their underline attribute
set.

UPDATE : KERNELS86
Marks the current block buffer (see BLOCK) as updated, so that it will be saved to disk.

UPPR ¢ PC

Put the Pc in Caprs-LoCK mode.
USIHG filename : PC

This word is to be used to activate a file for read/write operations and editing directly from
Forth. The related F83 word OPEN should be avoided, since it interacts badly with FORGET and
NEV-EXPERIMENT.

The default extension in F83 is 4TH, but in the CAM program EXP becomes the default. If no
filename is specified, or if the name contains any wildcard characters, a selctive directory listing
is given. If the file doesn’t exist, USING will offer to create it. For example, USING REIKO opens
the file RHINO.EXP for read/write. If an extension is given, it is of course used. See also UEXT.

V-EMIT (repetitions char) : PC

Calls the ROM BIOS video-I/O routine to emit a number of repetitions of a given character,
with the current attribute (see BLINK, A-EMIT, etc). Output is very fast, and leaves the cursor
back where it started.

VIEW name ¢ UTILITY

This is used for locating and examining source code (see also FIX). VIEW simply lists the screen
containing the definition, and makes this file and screen respectively the current view file and
the current screen. Only the words L, R, P, T, and K make reference to this view-file; the current
file used for editing and loading is unaffected by VIEW.

VIEW> (vfa -- cfa) : KERNELS86

Given a view-field address, return the corresponding code-field address.

VOC name : PC

Searches all vocabularies for the given word; the name of each vocabulary that contains a
matching entry is printed. If no vocabulary name is printed, the word is undefined.

Yy/s (—) : PC

Prints the message “(Y/N)” and waits for a key to be pressed. If ‘y’ or ‘Y’ is pressed, returns
true, else false.

{ (n) : UTILITY

Begins a CASE statement—a sort of computed subroutine call. The n-th Forth word in the
list between the curly braces is executed (n is the number on the stack), and then execution
continues with the word immediately following the list. An error is given if the argument is out
of range. For example,

Phicie]

f-m

G.2. Notable F83 words

: =ATTR (n)
{ REVERSE UNDERLINE BLINK INTENSITY }
DUP @ NEGATE SWAP ! ;

257

This word would invert the value of one of four display attributes—the number on the stack

tells which one.

All items within the curly braces must be defined Forth words. Note that numbers are not
single Forth words, except for those that are defined as CONSTANT’s; for convenience, the first
sixteen hexadecimal digits are defined as constants (0 through F). Like other words involving

branching, this construct can only appear within a compiled word.

}
See {.

UTILITY

258

Appendix G. Glossary

{‘m

Appendix H

Summary of control panel
functions

The highest level of the CAM program is a keyboard interpreter that turns the pPC
keyboard into a dedicated control panel for CAM. A list of the available control-
panel commands can be obtained by looking at the various menus, printed by the
key, as explained in Section 2.2. For reference, here we give a brief summary
of all control-panel keys, following the order used by the five @ menus.

The special keys used by the screen editor for control functions are not part
of the control panel and are listed in Chapter 6.

The heading of each of the following sections coincides with the name of the
corresponding menu; this, in turn, is but the name of the Forth vocabulary which
contains the commands listed in that menu. Similarly, in the listings each control-
panel key is accompanied by the name of the Forth word that is executed when the
corresponding key is hit; this name (which may slightly differ from the command
memonics used in the rest of the manual) is immediately echoed on the PC screen
when you hit a key.

259

260

Appendix H. Summary of control panel functions

H.0 GENERAL

The commands in the GENERAL menu perform functions of general utility that
do not affect cAM. The digit keys 0 thru 9 can be used to construct arguments
for other keys; after any non-digit key this argument is reset to “no argument,”
regardless of whether the non-digit key made use of an argument or not. Except
when using EI, all numeric arguments to keys are read in decimal regardless of

the default base (see SET-BASE in the glossary).

B

MENU Show the menu of menus. With a numeric argument,
shows one of the submenus.

B|E

Forth... Leave the control panel and begin a dialogue di-
rectly with the Forth interpreter.

Esc

(ignored) If you are in Forth, or typing a text argument to
any control panel key, this puts you at the top level of the control
panel. If you are already at the top level of the control panel,
this key is ignored.

L]

DOS... Leave the control panel and begin a dialogue directly
with a copy of the DOS command interpreter. Type exit to
DOS to return to the control panel.

Number: Used to enter arguments to keys that are not in
decimal notation. Without a numeric argument, this key accepts
a text argument which it interprets as a hexadecimal number. If
this key is preceded with a numeric argument, then this number
is used as the radix in interpreting the subsequent text argument
as a number.

H.1. DISPLAY-CONTROL 261

H.1 DISPLAY-CONTROL

These keys affect the display without affecting the contents of the planes or the
tables.

(2] Toggle.display.source When sharing a single display, tog-
gles between viewing the PC display and the currently selected
CAM display; when PC has its own display, has no effect with-
out an argument. In either case, if multiple CAMs are sharing a
display, an argument selects the given CAM for display.

Show.PC.display If CAM and the PC share a display, will
show the PC display; else has no effect. With an argument,
shows the PC and selects the given CAM as the one to be seen
with IE'

Toggle.expanded.view Toggles between an expanded view
of the central portion of the configuration, and the normal view.
All keys function in either view. '

[=]

Normal.size Show normal-sized view of configuration.

Toggle.grid Turn grid on if its off, off if its on. Grid is only
visible in the expanded view.

Grid.off Turn the grid off.
IRGB.map Select the IRGB color map.
Std.map Select the STD color map.

Toggle.inten Toggle the visibility of the intensity “beam” of
the display.

Inten.on Turn intensity back on if it is toggled off.

Toggle.red Toggle visibility of red beam.

Red.on Turn red beam back on if its off.
Toggle.green Toggle visibility of green beam.

ElREIEE EEEY X E

Green.on Turn green beam back on if its off.

] [
==
5|ls

Toggle.blue Toggle visibility of blue beam.

Blue.on Turn blue back on if its off.

262

Appendix H. Summary of control panel functions

H.2 EDITING,RUNNING

These keys control the editing, loading, and running of CAM experiments.

L]

Edit.screen Continue editing the most recently edited
screen. With an argument, will edit the indicated screen of
the current file.

(E]

Edit.new.file: Takes a text argument of a new file to edit.
If you just hit return, or if the name you give has any wild-
card characters, gives a directory listing and asks again for a
filename. Default extension is .EXP. If you give a filename that
doesn’t exist, will offer to create the file. With a numeric argu-
ment, editing starts at the indicated screen; otherwise it starts
at screen number 1.

[=

Load Load the current file. With an argument, will load just
the indicated screen of the current file.

=

Load.new.file: Like E, except that the indicated file is
loaded, and it won’t offer to create any files. With an argument,
will just load the indicated screen.

TAB

Tab.-->.file: Save the currently active 4K block of the
selected CAM’s lookup tables to a file. Like @, it can provide a
directory listing.

IBACKTABI

Tab.<--.file: Load the currently active 4K block of the
selected CAM’s lookup tables from a file. Can provide a directory
listing.

Map.-->.file: Save the selected CAM’s color map to a file.
This can be useful for generating color hardcopy displays of the
screen. Can provide a directory listing. -

Map.<--.file: Load the selected CAM’s color map from a
file. Can provide a directory listing.

Step(s) Run one step. With an argument, runs the indicated
number of steps. If the argument is zero, starts to run 232 steps,
counting as it goes.

Continue.steps... Resume running steps; continue count
where you left off.

Slower Run more slowly.

A & EE H B

Slowest! Run about one step a second.

Faster Run faster.

Fastest! Run 60 steps a second.

ISPACE|

Stop running Stop running, and print the current step num-

ber.

H.3. PLANE-OPS 263

H.3 PLANE-0PS

Operations on CAM’s bit-planes, or between memory buffers and bit-planes. Note
that when the cage is active, all operations apply only to the cage region, treating
it as if it were the screen, and treating the bit-plane area masked by the cage as
if it were the buffer. All operations whose name involves the term ‘plane(s)’ take
an optional plane argument: no argument means operate on all four planes; 0, 1,
2, or 3 indicate a single plane to operate on, and 4 or 5 indicate both planes of
either CAM-A or CAM-B respectively. All logical operations involving data from
both a buffer and a bit-plane leave their results in the bit-plane.

[o]

Toggle.cage Toggle visibility of the cage. With an argument,
creates a new (empty) cage of the given size: first decimal digit
in argument is width, second is height, both in units of eight. If
only one digit is given, it is used for both height and width.

Cage.off Hide the cage.

Zero.plane(s) Clear plane(s) to all zeros.
Fill.plane(s) Fill plane(s) with all ones.
CW.plane(s) Rotate plane(s) clockwise 90°.
CCW.plane(s) Rotate plane(s) counter clockwise 90°.
\-flip plane(s) Flip plane(s) across the \ diagonal.

/-flip.plane(s) Flip plane(s) across the / diagonal.

T/B-flip.plane(s) Flip plane(s) from top to bottom.

S/S-flip.plane(s) Flip plane(s) from side to side.
OR.plane(s) Bit by bit logical OR of bit plane(s) with cor-
responding buffers.

AND.plane(s) Logical AND of bit plane(s) with correspond-
ing buffers.

XOR.plane(s) Logical XOR of bit plane(s) with correspond-
ing buffers.

NOT.plane(s) Logical NOT of bit plane(s).

EHE R EE EEEE

]

264 Appendix H. Summary of control panel functions

Get.image.from.buffer Get bit plane(s) from buffer.

(=]

Get.image.from.the.file: Get an image for the entire
screen (not just the cage or any other active region) from a
file.

Put.image.into.buffer Put bit plane(s) into corresponding
buffers. .
Put.image.into.the.file: Put the image contained on the
entire screen (not just the cage or any other active region) and
store it into a file.

Exchange.display.and.buffer = Exchange plane(s) with
plane buffers.

] & E

Percent.of.ones Set the percent of ones to be used by [;|

&=

Random.configuration (enerate a random configuration on
the indicated bit plane(s).

Number.of .ones Set the expected number of ones to be used
by B

Init.random.number.generator Initialize the software ran-
dom number generator to a standard state. With an argument,
uses it as part of its seed.

O] [
[=]

Permute/copy.planes Permute or copy the contents of the
indicated planes. A four-digit argument indicates the data
source (i.e., which plane) for each of the four planes—in the
order 0, 1, 2, 3. With no argument, re-uses most recent argu-
ment.

H.4 DOTS,SHIFTS

Keys used for dot editing (editing individual bits of CAM cell values). When the
dot-cursor is visible, the arrows (and the mouse, if you have one) move the dot
cursor rather than the bit-planes. Note that the four corner keys of the numeric
keypad are used as additional diagonal-arrow keys by the control panel. On the
mouse, the left button is used for drawing horizontal and vertical lines, the right
button for diagonal lines, the middle button for unconstrained placement of dots.
If the [El key is held down while the cursor is moved (with the arrows or the
mouse) dots will be toggled as the cursor goes by. On some keyboards the auto-
repeat function on some keys doesn’t work while the insert key is down: any of

the shift-lock keys (including) can be used within the control panel

- H.5. ALTERNATE 265

instead of for this purpose.

s l4] Toggle.dots Toggle dot cursor on or off. With an argument,
turns dot cursor on on the indicated bit-plane, otherwise the bit
plane in use doesn’t change.

|=

Dots.off Turn dot cursor off.
P h Hold.fixed Hold the specified plane(s) fixed during shifts us-
: ing the arrow keys.

[

(4] Un-hold Free the specified plane(s) to shift.
; [o] Cursor.to.origin Move the dot-cursor to the center of the
screen.
(0] Shift.to.origin Shift all planes until the dot cursor is at

the center of the screen.

Up Shift un-held bit planes upward: use auto-repeat of key-
= board for continuous shift. With an argument, shift by the in-
dicated amount until the default argument is again changed by
giving an explicit argument. When an argument has been given,
™ all subsequent shifts are a multiple of the given value; the inital
default is multiples of 8.

Down Similar to|]], but shift down.

Left Similar to m, but shift left.

Right Similar to []], but shift right.

UpLt Similar to | 1], but shift diagonally up and to the left.
UpRt Similar to | 1], but shift diagonally up and to the right.
DnLt Similar to|], but shift diagonally down and to the left.
PGDN| | DnRt Similar to[T], but shift diagonally down and to the right.

= [INs] Insert.dot Inserts a dot at the cursor position, and on the
! cursor bit-plane, even if the cursor isn’t visible.

=

7
L=

=
5

WE
1)
c
v

ey
o

» H.5 ALTERNATE

- The Alt- keys are reserved for application-specific, user-defined commands (cus-

: tom control-panel commands). When the word ALIAS is used to attach a key to
a Forth word in an experiment, the name of the key should be written in upper

s case. (For example, ALIAS F2 would attach a Forth word to the key |A1t-F2|).

266

Appendix H. Summary of control panel functions

~. 3

-3

Index

If you don’t find an item as a top-level index
entry, look at the subentries of the following
main entries:

—Control-panel commands (listed by fune-
tional groups) '

—Control-panel keys (listing of individual
keys)

—Editor (listing of individual screen-editor
keys)

—Files (terminology, types, operations)
—PForth (terms and concepts of the lan-
guage)

Forth words are listed here only if they
are explicitly discussed in the text. For
an extensive listing of Forth words, con-
sult the two sections of the glossary (Ap-
pendix G)—of which the first is devoted to
CAM-specific words and the second to Forth-
generic words.

==, see Lookup table, address-line assign-
ment

Aborting a command, see Control-panel
commands

ALIAS, 90, 175, 267

ALPHA, 111

ALPEA’, 111

ALSO, 68, 78

ALTERNATE, 175

Arguments, see Control-panel commands

Arrow keys, see Keyboard

Assembler, see Forth, assembler

ASSEMBLER, 67, 147

Auto-extend, see Editor

Auto-shrink, see Editor

AUTO-X, 72, 142

AUTOCORR.4TH, 234

Auxiliary table, see Lookup table

AUX-TABS, 114

B=4A, 128
BARE, 90
BARELIFE, 18
BEGIN-SERVICE-STEPS, 174
BETA, 111
BETA®, 111
Bit-plane, 21
edges, 21, 125, 127
Block, see Forth, block
Boundary conditions, see Bit-plane, edges;
Bit-plane, wraparound
Break key, 17, 42-43
BUF>PDAT, 38
BYE, 12, 42, 45, 48
Cage, 34
buffers, 34
CAM-4, 104
CAM-AB, 104, 121
CAM-B, 104
CAM~BASE, 9
CAM-BUF.4TH, 159
CAM-INT.4TH, 159
CAM-I0.4TH, 159
CAM-IRQ%#, 9
CAM-SELECT, 132
CAM.COM, see Software interface
CAM.EXE, 10-11, 15, 143
entering, 12
leaving, 12
CAMOUT, 139
CcAMS, 138
CAPACITY, 79
CAPS ON, 142
CCR, 139
CLOSE-DATA, 98
CODE, see Forth, copE
COLON compiler, see Forth, compiler
COLON interpreter, see Forth, interpreter
Color filters, 24
Color map, 22, 111

268

disabling a beam, 24
IRGB, 23-24, 111
standard, 25, 88, 112
Column dispatcher, see Lookup table
CON, 42
Compiler, see Forth, compiler
CONTEXT, 67
Control and configuration register, 127
Control panel, 15
mode, see Keyboard
numeric argument, 16, 23
prompt, 15
string argument, 16
summary of commands, 261
Control-panel commands
aborting a command, 17
cage, 34
display, 18
dot, insert, 31
expand, grid, 30, 110
fill, complement, 27
hold, 26
loading, 43
logic operations, 36
menus, 16
plane saving and loading, 37
random, 28
rotate, reflect, 27
running control, 19, 117
screen editor, 44
shift, 25
summary, 261
user-defined commands, 18, 80
Control-panel keys
, 18, 138, 263
custom keys, 25
clic], 34-35, 265
4||b|, 31, 267
e|[E}, 44, 264
function keys, 24-25, 263
, 42, 262
, 33, 35, 37, 266
, 26, 267
, 28, 266
, 43, 264
, 16, 262
, 31, 267
, 33, 35, 37, 266
, 27, 265

AR EAEREAN
wlv]olx|rlx]=x|a]m

INDEX

s|[S], 19, 264

x|{X], 19, 30, 263

, 25, 267

1] 25, 267

—|, 25-26, 267

—{, 25, 267

Esc|, 17, 37, 42, 44, 262

HoME|, 25, 267

END|, 25, 267

PcUr|, 25, 267

PGDNJ, 25, 267

INs|, 31, 267

BACKTAB]|, 111, 264

TaB|, 111, 264

SPACE], 19, 264

—] 16-17

, 30, 263

, 262

, 36, 265

, 28, 266

, 36, 265

, 30, 263

, 33, 266

, 36, 265

, 19, 264

, 27, 36, 265

, 19, 264

, 27, 265

, 28, 266

, 28, 266

, 19, 264

, 19, 264

, 27, 265

, 266

, 27, 265

, 27, 265

, 262

[z], 27, 265

CONVEY, 81

Counter, see Step, counter

CPUB086.4TH, 143, 147

CREATE-FILE, 239

CURRENT, 67

Custom keys, see Control-panel commands,
user-defined commands

Data analysis, 94

Data file, see File

Data formats, see File

DATA-PTR, 120, 242

d=1e | oA vial---- N (o] [+] o] ~[e]s<]e]e] <]

INDEX

DEBUG, see Machine-language debugger
DEFER, 77
DEFINITIONS, 67
Display
mode, 18, 137~-138, 142
DISPLAYS, 138, 142
DOS..., 42
DOS
from Forth, 42
returning to, 12, 42, 45
D0S2.4TH, 234
Dot mode, 30
Dr. Halo, 38
Echo, 89
ECHO, 90
EDIT, 55, 79
Editor, see Forth, screen editor; Plane edi-
tor; External editors
auto-extend, 72
auto-shrink, 72
date stamp, 75, 141
insert mode, 71, 142
EDITOR, 67
Editor keys
Ctrl-A| 73
Ctrl-B| 73
Cctrl-C| 74
Ctrl-D} 73
Ctrl-E| 73
function keys, 74-75
Ctrl-F| 73
Ctrl-G|, 76
Ctrl-H| 73
Ctrl-I| 73
Ctrl-J| 74
Ctrl-K| 74
Ctrl-L| 74
Ctrl-M| 73
Ctrl-N| 73
Ctrl-0| 74
Ctrl-P| 73
Ctrl-R|, 74
Ctrl-s|, 74
ctrl-T|, 76
Ctrl-U|, 73
Ctrl-v| 73
Ctrl-w| 74
ctrl-X{ 72, 74
Ctrl-Y| 74

Ctrl-Z| 73
END-SERVICE-STEPS, 175
Event counter, 94, 118
EVENT-COUNT, 96, 98, 118
EVENT-STOP, 118
EXEC, 42
EXIT, 42
Experiment file, see File
EXTEND86.4TH, 143-144
External editors, 38
F83 standard, 179
F83.EXE, 11, 45, 143
File, 42, 177
copying, 89
current, 43, 78
data, 97, 120, 178
extension, 10
listing, 80
pattern, 91, 93, 120, 177
source, 142
table, 111, 121, 177
types of, 10
FILE>IMAGE, 120
FILE>SPL, 93, 120
FILE>TAB, 111, 177
FINISHE-CYCLE, 117
FIX, 79
FOR-ALL-CAMS, 132
Forth-83 standard, 69
Forth
arithmetic to logic conversion, 65
arithmetical expressions, 53
assembler, 56, 147
block, 21, 42, 72, 79, 98, see File

269

270

CASE construct, 62
cell, 98
CODE, 56, 77, 150, 1565
code field, 56, 155
compiler, 49, 154
conditional statement, 63
CONSTANT, 56
data cell, 56
decompiler, 77
dictionary, 49
double number, 66, 96, 98
editor, 41, 54, see Editor
glossary, 69
inner interpreter, 150, 153
interpreter, 42, 47, 155
iteration, 58
kernel, 142, 144
loader, 41, 43, 54
logic expression, 64
logic value, 65
metacompiler, 144
number, 51
number base, 141
prompt, 42
quadruple number, 67
references, 69
reverse Polish notation, 53
screen, see Forth, block
search order, 67
stack, 52
stack comment, 60
stack operators, 61
standard, see F83 standard
token, 48
tutorial, 47
VARIABLE, 57, 155
vocabularies, 51, 67
word, 48
word locator, 77
FORTH, 67, 78, 147
FREEZE, 90
Function keys, see Control-panel keys; Edi-
tor keys
GENERAL, 175
GET-DATA, 120, 239
Gluing, 127
Grid, see Spatial grid
HALOPAT.EXE, 38
Hard disk, 11, 145

INDEX

Hardware
configuration, 9, 12
test, 12
I°M, 141
IDLE, 116, 174
IMAGE>FILE, 177
INDEX, 80
INSO, 142
Initialization, 121
Interpreter, see Forth, interpreter; Forth, in-
ner interpreter
INVISIBLE, 93
IRGB map, see Color map
IRGB-MAP; 23
KERNEL.EXE, 143
KERNEL86.4TH, 144, 150, 159
Keyboard
arrow keys, 25
control-panel mode, 15, 17, 71
typewriter mode, 15, 17, 71
Kicking, 132
LISTING, 81
LOAD, 55, 80
Lookup table, 101, see File, table
address-line assignment, 103, 124, 174
auxiliary, 102, 113
column, 101
column dispatcher, 105-106
descriptor, 87-88
generation, 87, 105, 174
precompiled, 111
regular, 102, 113
row, 101
Machine-language debugger, 168
Macro-step, 117
MAKE-CMAP, 111
MAKE-CYCLE, 96, 116-118, 174
MAKE-TABLE, 87-88, 106, 174
Menus, 16, 261
META86 .4TH, 144
Monitor
beams, 23
configuration, 137, 142
disabling a beam, see Color map, dis-
abling a beam
sharing, 18
MORE, 82
Mouse, 146
N/MOORE, 86

3

2

3

A 3

-3

INDEX

N/USER, 121
Neighbor word, 107
Neighborhood assignment, 86, 88, 103
hardware effects, 103-104
in the run cycle, 114
order, 105
software effects, 103-104
NEW-EVENTS, 96
NEW-EXPERIMENT, 79, 86, 88, 104, 121, 132
NEXT-CAM, 132
NEXT-CYCLE, 117-118
NEXT-STEP, 116-117, 174
ok, 42
ONLY, 68, 78
OPEN, 79
OPEN-DATA, 97, 120, 232, 239
OPEN-PATTERN, 93, 120, 241
OPEN-TABLE, 121
ORDER, 68
Output function, 103
PAT, 37
Pattern file, see File
Pattern
initial, 91
mask, 92
random, 93
PC.4TH, 143
PEND, 173-174
Phase, see Temporal phases; Spatial phases
PINOUT.DOC, 124
Plane buffers, 32
Plane editor, 21
tutorial, 23
PL>FILE, 120
PL>PB, 93
PLANE-OPS, 175
PREVIOUS, 68
Printer, 142, 144
PRINTING, 81
Probability register, 28
PUT-DATA, 120, 239
Q2REOS, 97
QUAD.4TH, 67, 234
R/FLY, 174
Random pattern, 28
REG-TABS, 114
Regular table, see Lookup table
Reverse Polish notation, see Forth
REWIND, 98

RND>PL, 93
ROOT, 67
Rule description, 87
Run cycle, 96, 114, 116
SAMPLE.PAT, 23
Save modified system, 142
SAVE-SYSTEN, 142
Screen, see Forth, block
SEE, 77
SET-BASE, 142
Shadow screen, 75, 77, 81
SHADOW, 78
SHOW, 78, 81
SHOW-CAN, 132
SHOW-FUNCTION, 113, 118-119
SHOW-STATE, 113, 118-119
Simulation clock, 116
Software
custom screens, 144
customization, 141
interface, 173
system generation, 142
Spatial grid, 30, 110
Spatial phases, 101, 108, 110, 114
Standard map, see Color map
STD-MAP, 86, 88, 121
Step
active, 94
counter, 19
idle, 94
rate, 19, 116
STEP, 96, 116, 121, 132, 173-174
System generation, see Software
TAB>FILE, 111, 177
Table file, see File; Lookup table
Temporal phases, 102, 108, 114
Terminal, 15
Trace, 89
TRACE, 90
Typing conventions, 16
Typing modes, see Keyboard
User connector, 102, 123, 131
&/USER, 121
USING, 78-79
UTILITY.4TH, 143
VIEW, 77-78, 78, 145
W/FLY, 174
WAIT-FOR-PEND, 173-174
Wild-card characters, 37

271

272

Work disk, 11, 85
Wraparound, see Bit-plane, edges

INDEX

3

3

3

